Source code for gemseo.core.aggregation_disc
# -*- coding: utf-8 -*-
# Copyright 2021 IRT Saint Exupéry, https://www.irt-saintexupery.com
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU Lesser General Public
# License version 3 as published by the Free Software Foundation.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
# Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with this program; if not, write to the Free Software Foundation,
# Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
# Contributors:
# INITIAL AUTHORS - API and implementation and/or documentation
# :author: Francois Gallard
# OTHER AUTHORS - MACROSCOPIC CHANGES
"""An MDODiscipline to aggregates constraints using KS/IKS/Max methods."""
from typing import Any, Optional, Sequence
from numpy import atleast_1d
from gemseo.algos.aggregation.core import iks_agg, iks_agg_jac, ks_agg, ks_agg_jac
from gemseo.core.discipline import MDODiscipline
from gemseo.utils.data_conversion import DataConversion
METHODS_MAP = {"KS": ks_agg, "IKS": iks_agg}
METHODS_JAC_MAP = {"KS": ks_agg_jac, "IKS": iks_agg_jac}
[docs]class ConstrAggegationDisc(MDODiscipline):
"""A discipline that aggregates the constraints computed by other disciplines.
An efficient alternative to constraint aggregation in the optimization problem
is to aggregate the constraint in a discipline.
This can be included in a MDO formulation,
and in particular in a MDA,
so only one adjoint calculation can be performed for the aggregated
constraint instead of one adjoint per original constraint dimension.
See :cite:`kennedy2015improved` and :cite:`kreisselmeier1983application`.
"""
def __init__(
self,
constr_data_names, # type: Sequence[str]
method_name, # type: str
name=None, # type: Optional[str]
**meth_options # type: Any
): # type: (...) -> None # noqa: D205,D212,D415
"""
Args:
constr_data_names: The names of the constraints to aggregate.
It shall be the output data of other disciplines.
method_name: The name of the aggregation method, among KS, IKS.
name: The name of the discipline.
**meth_options: The options for the aggregation method.
Raises:
ValueError: If the method is not supported.
"""
if method_name not in METHODS_MAP:
raise ValueError(
"Unsupported aggregation method named {}".format(method_name)
)
super(ConstrAggegationDisc, self).__init__(name)
self.__method_name = method_name
self.__input_names = constr_data_names
self.__meth_options = meth_options
self.__output_names = [
"{}_{}".format(self.__method_name, c) for c in constr_data_names
]
self.__out_sizes = {k: 1 for k in self.__output_names}
self.input_grammar.initialize_from_data_names(self.__input_names)
self.output_grammar.initialize_from_data_names(self.__output_names)
def _run(self): # type: (...) -> None
c_data = DataConversion.dict_to_array(self.local_data, self.__input_names)
method = METHODS_MAP[self.__method_name]
c_agg = atleast_1d(method(c_data, **self.__meth_options))
out_data = DataConversion.array_to_dict(
c_agg, self.__output_names, self.__out_sizes
)
self.store_local_data(**out_data)
def _compute_jacobian(
self,
inputs=None, # type: Optional[Sequence[str]]
outputs=None, # type: Optional[Sequence[str]]
): # type: (...) -> None
c_data = DataConversion.dict_to_array(self.local_data, self.__input_names)
method_jac = METHODS_JAC_MAP[self.__method_name]
c_agg_jac = method_jac(c_data, **self.__meth_options)
data_sizes = {k: s.size for k, s in self.local_data.items()}
data_sizes.update(self.__out_sizes)
self.jac = DataConversion.jac_2dmat_to_dict(
c_agg_jac, self.__output_names, self.__input_names, data_sizes
)