Source code for gemseo.core.concatenation_discipline
# -*- coding: utf-8 -*-
# Copyright 2021 IRT Saint Exupéry, https://www.irt-saintexupery.com
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU Lesser General Public
# License version 3 as published by the Free Software Foundation.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
# Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with this program; if not, write to the Free Software Foundation,
# Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
# Contributors:
# INITIAL AUTHORS - API and implementation and/or documentation
# :author: Jean-Christophe Giret
# OTHER AUTHORS - MACROSCOPIC CHANGES
"""Concatenation of several input variables into a single one.
The :class:`.ConcatenationDiscipline` enables to concatenate inputs variables into a
single output variable.
Example:
This example demonstrates the use of the :class:`.ConcatenationDiscipline`
instances.
The contraints variables :math:`c_1` and :math:`c_2` are concatenated into a
single variable :math:`c`.
>>> from gemseo.api import create_discipline
>>> sellar_system_disc = create_discipline('SellarSystem')
>>> input_vars = ['c1', 'c2']
>>> output_var = ['c']
>>> concatenation_disc = create_discipline('ConcatenationDiscipline',
... input_vars,
... output_var)
>>> disciplines = [sellar_system_disc, concatenation_disc]
>>> chain = create_discipline('MDOChain', disciplines=disciplines)
>>> print(chain.execute())
>>> print(chain.linearize(force_all=True))
"""
from typing import Optional, Sequence
from numpy import diag, ones, zeros
from gemseo.core.discipline import MDODiscipline
from gemseo.utils.py23_compat import accumulate
[docs]class ConcatenationDiscipline(MDODiscipline):
"""Concatenate input variables into a single output variable."""
def __init__(
self,
input_variables, # type: Sequence[str]
output_variable, # type: str
): # type: (...) -> None
"""
Args:
input_variables: The input variables to concatenate.
output_variable: The output variable name.
"""
super(ConcatenationDiscipline, self).__init__()
self.input_grammar.initialize_from_data_names(input_variables)
self.output_grammar.initialize_from_data_names([output_variable])
self.__output_variable = output_variable
def _run(self): # type: (...) -> None
"""Run the discipline."""
self.local_data[self.__output_variable] = self.get_inputs_asarray()
def _compute_jacobian(
self,
inputs=None, # type: Optional[Sequence[str]]
outputs=None, # type: Optional[Sequence[str]]
): # type: (...) -> None
"""Compute the jacobian matrix.
Args:
inputs: The linearization should be performed with respect
to inputs list. If None, linearization should
be performed wrt all inputs (Default value = None)
outputs: The linearization should be performed on outputs list.
If None, linearization should be performed
on all outputs (Default value = None)
"""
self._init_jacobian(inputs, outputs, with_zeros=True)
inputs_names = self.get_input_data_names()
inputs_sizes = [inp.size for inp in self.get_all_inputs()]
inputs_total_size = self.get_inputs_asarray().size
# Instead of manually accumulating, we use the accumulate() iterator.
for name, size, start in zip(
inputs_names, inputs_sizes, accumulate(inputs_sizes, initial=0)
):
val = zeros([inputs_total_size, size])
val[start : (start + size), :] = diag(ones(size))
self.jac[self.__output_variable][name] = val