Source code for gemseo.mlearning.regression.random_forest
# -*- coding: utf-8 -*-
# Copyright 2021 IRT Saint Exupéry, https://www.irt-saintexupery.com
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU Lesser General Public
# License version 3 as published by the Free Software Foundation.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
# Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with this program; if not, write to the Free Software Foundation,
# Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
# Contributors:
# INITIAL AUTHORS - initial API and implementation and/or initial
# documentation
# :author: Syver Doving Agdestein
# OTHER AUTHORS - MACROSCOPIC CHANGES
"""The random forest for regression.
The random forest regression uses averaging methods on an ensemble of decision trees.
Dependence
----------
The regression model relies on the RandomForestRegressor class
of the `scikit-learn library <https://scikit-learn.org/stable/modules/
generated/sklearn.ensemble.RandomForestRegressor.html>`_.
"""
from __future__ import division, unicode_literals
import logging
from typing import Iterable, Optional, Union
from numpy import ndarray
from sklearn.ensemble import RandomForestRegressor as SKLRandForest
from gemseo.core.dataset import Dataset
from gemseo.mlearning.core.ml_algo import TransformerType
from gemseo.mlearning.regression.regression import MLRegressionAlgo
LOGGER = logging.getLogger(__name__)
[docs]class RandomForestRegressor(MLRegressionAlgo):
"""Random forest regression."""
LIBRARY = "scikit-learn"
ABBR = "RandomForestRegressor"
def __init__(
self,
data, # type: Dataset
transformer=None, # type: Optional[TransformerType]
input_names=None, # type: Optional[Iterable[str]]
output_names=None, # type: Optional[Iterable[str]]
n_estimators=100, # type: int
**parameters
): # type: (...) -> None
"""
Args:
n_estimators: The number of trees in the forest.
"""
super(RandomForestRegressor, self).__init__(
data,
transformer=transformer,
input_names=input_names,
output_names=output_names,
n_estimators=n_estimators,
**parameters # type: Optional[Union[bool,int,float,str]]
)
self.algo = SKLRandForest(n_estimators=n_estimators, **parameters)
def _fit(
self,
input_data, # type: ndarray
output_data, # type: ndarray
): # type: (...) -> None
# SKLearn RandomForestReressor does not like output
# shape (n_samples, 1), prefers (n_samples,).
# The shape (n_samples, n_outputs) with n_outputs >= 2 is fine.
if output_data.shape[1] == 1:
output_data = output_data[:, 0]
self.algo.fit(input_data, output_data)
def _predict(
self,
input_data, # type: ndarray
): # type: (...) -> ndarray
output_data = self.algo.predict(input_data)
# n_outputs=1 => output_shape=(n_samples,). Convert to (n_samples, 1).
if len(output_data.shape) == 1:
output_data = output_data[:, None]
return output_data