Source code for gemseo.uncertainty.statistics.tolerance_interval.exponential
# -*- coding: utf-8 -*-
# Copyright 2021 IRT Saint Exupéry, https://www.irt-saintexupery.com
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU Lesser General Public
# License version 3 as published by the Free Software Foundation.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
# Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with this program; if not, write to the Free Software Foundation,
# Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
# Contributors:
# INITIAL AUTHORS - initial API and implementation and/or initial
# documentation
# :author: Matthias De Lozzo
# OTHER AUTHORS - MACROSCOPIC CHANGES
"""Computation of tolerance intervals from a data-fitted exponential distribution."""
import openturns as ot
from gemseo.uncertainty.statistics.tolerance_interval.distribution import (
ToleranceInterval,
)
[docs]class ExponentialToleranceInterval(ToleranceInterval):
"""Computation of tolerance intervals from a data-fitted exponential distribution.
The formulae come from the R library *tolerance* [1]_.
.. [1] Derek S. Young,
*tolerance: An R Package for Estimating Tolerance Intervals*,
Journal of Statistical Software, 36(5), 2010
"""
def __init__(
self,
size, # type: int
rate, # type: float
location, # type: float
): # type:(...) -> None
# noqa: D205 D212 D415
"""
Args:
rate: The estimation of the rate of the exponential distribution.
location: The estimation of the location of the exponential distribution.
"""
super(ExponentialToleranceInterval, self).__init__(size)
self.__rate = rate
self.__location = location
def _compute_lower_bound(
self,
coverage, # type: float
alpha, # type: float
size, # type: int
): # type: (...) -> float
k_1 = 1 - (coverage ** size / alpha) ** (1.0 / (size - 1))
return self.__location + k_1 / self.__rate
def _compute_upper_bound(
self,
coverage, # type: float
alpha, # type: float
size, # type: int
): # type: (...) -> float
chi2_num = ot.ChiSquare(2).computeQuantile(coverage)[0]
chi2_den = ot.ChiSquare(2 * size - 2).computeQuantile(coverage)[0]
k_2 = size * chi2_num / chi2_den
return self.__location + k_2 / self.__rate