empirical module¶
Class for the empirical estimation of statistics from a dataset.
Overview¶
The EmpiricalStatistics
class inherits
from the abstract Statistics
class
and aims to estimate statistics from a Dataset
,
based on empirical estimators.
Construction¶
A EmpiricalStatistics
is built from a Dataset
and optionally variables names.
In this case,
statistics are only computed for these variables.
Otherwise,
statistics are computed for all the variable available in the dataset.
Lastly,
the user can give a name to its EmpiricalStatistics
object.
By default,
this name is the concatenation of ‘EmpiricalStatistics’
and the name of the Dataset
.
- class gemseo.uncertainty.statistics.empirical.EmpiricalStatistics(dataset, variables_names=None, name=None)[source]¶
Bases:
gemseo.uncertainty.statistics.statistics.Statistics
Empirical estimation of statistics.
Examples
>>> from gemseo.api import ( ... create_discipline, ... create_parameter_space, ... create_scenario) >>> from gemseo.uncertainty.statistics.empirical import EmpiricalStatistics >>> >>> expressions = {"y1": "x1+2*x2", "y2": "x1-3*x2"} >>> discipline = create_discipline( ... "AnalyticDiscipline", expressions=expressions ... ) >>> >>> parameter_space = create_parameter_space() >>> parameter_space.add_random_variable( ... "x1", "OTUniformDistribution", minimum=-1, maximum=1 ... ) >>> parameter_space.add_random_variable( ... "x2", "OTUniformDistribution", minimum=-1, maximum=1 ... ) >>> >>> scenario = create_scenario( ... [discipline], ... "DisciplinaryOpt", ... "y1", ... parameter_space, ... scenario_type="DOE" ... ) >>> scenario.execute({'algo': 'OT_MONTE_CARLO', 'n_samples': 100}) >>> >>> dataset = scenario.export_to_dataset(opt_naming=False) >>> >>> statistics = EmpiricalStatistics(dataset) >>> mean = statistics.mean()
- Parameters
dataset (Dataset) – A dataset.
variables_names (Iterable[str] | None) –
The variables of interest. Default: consider all the variables available in the dataset.
By default it is set to None.
name (str | None) –
A name for the object. Default: use the concatenation of the class and dataset names.
By default it is set to None.
- Return type
None
- compute_a_value()¶
Compute the A-value \(\text{Aval}[X]\).
- Returns
The A-value of the different variables.
- Return type
- compute_b_value()¶
Compute the B-value \(\text{Bval}[X]\).
- Returns
The B-value of the different variables.
- Return type
- classmethod compute_expression(variable_name, statistic_name, show_name=False, **options)¶
Return the expression of a statistical function applied to a variable.
E.g. “P[X >= 1.0]” for the probability that X exceeds 1.0.
- Parameters
variable_name (str) – The name of the variable, e.g.
"X"
.statistic_name (str) – The name of the statistic, e.g.
"probability"
.show_name (bool) –
If True, show option names. Otherwise, only show option values.
By default it is set to False.
**options (bool | float | int) – The options passed to the statistical function, e.g.
{"greater": True, "thresh": 1.0}
.
- Returns
The expression of the statistical function applied to the variable.
- Return type
- compute_margin(std_factor)¶
Compute a margin \(\text{Margin}[X]=\mathbb{E}[X]+\kappa\mathbb{S}[X]\).
- Parameters
std_factor (float) – The weight \(\kappa\) of the standard deviation.
- Returns
The margin for the different variables.
- Return type
- compute_maximum()[source]¶
Compute the maximum \(\text{Max}[X]\).
- Returns
The maximum of the different variables.
- Return type
- compute_mean()[source]¶
Compute the mean \(\mathbb{E}[X]\).
- Returns
The mean of the different variables.
- Return type
- compute_mean_std(std_factor)¶
Compute a margin \(\text{Margin}[X]=\mathbb{E}[X]+\kappa\mathbb{S}[X]\).
- Parameters
std_factor (float) – The weight \(\kappa\) of the standard deviation.
- Returns
The margin for the different variables.
- Return type
- compute_median()¶
Compute the median \(\text{Med}[X]\).
- Returns
The median of the different variables.
- Return type
- compute_minimum()[source]¶
Compute the \(\text{Min}[X]\).
- Returns
The minimum of the different variables.
- Return type
- compute_moment(order)[source]¶
Compute the n-th moment \(M[X; n]\).
- Parameters
order (int) – The order \(n\) of the moment.
- Returns
The moment of the different variables.
- Return type
- compute_percentile(order)¶
Compute the n-th percentile \(\text{p}[X; n]\).
- Parameters
order (int) – The order \(n\) of the percentile. Either 0, 1, 2, … or 100.
- Returns
The percentile of the different variables.
- Return type
- compute_probability(thresh, greater=True)[source]¶
Compute the probability related to a threshold.
Either \(\mathbb{P}[X \geq x]\) or \(\mathbb{P}[X \leq x]\).
- Parameters
- Returns
The probability of the different variables
- Return type
- compute_quantile(prob)[source]¶
Compute the quantile \(\mathbb{Q}[X; \alpha]\) related to a probability.
- Parameters
prob (float) – A probability \(\alpha\) between 0 and 1.
- Returns
The quantile of the different variables.
- Return type
- compute_quartile(order)¶
Compute the n-th quartile \(q[X; n]\).
- Parameters
order (int) – The order \(n\) of the quartile. Either 1, 2 or 3.
- Returns
The quartile of the different variables.
- Return type
- compute_range()[source]¶
Compute the range \(R[X]\).
- Returns
The range of the different variables.
- Return type
- compute_standard_deviation()[source]¶
Compute the standard deviation \(\mathbb{S}[X]\).
- Returns
The standard deviation of the different variables.
- Return type
- compute_tolerance_interval(coverage, confidence=0.95, side=ToleranceIntervalSide.BOTH)¶
Compute a tolerance interval \(\text{TI}[X]\).
This coverage level is the minimum percentage of belonging to the TI. The tolerance interval is computed with a confidence level and can be either lower-sided, upper-sided or both-sided.
- Parameters
coverage (float) – A minimum percentage of belonging to the TI.
confidence (float) –
A level of confidence in [0,1].
By default it is set to 0.95.
side (gemseo.uncertainty.statistics.tolerance_interval.distribution.ToleranceIntervalSide) –
The type of the tolerance interval characterized by its sides of interest, either a lower-sided tolerance interval \([a, +\infty[\), an upper-sided tolerance interval \(]-\infty, b]\), or a two-sided tolerance interval \([c, d]\).
By default it is set to BOTH.
- Returns
The tolerance limits of the different variables.
- Return type
- compute_variance()[source]¶
Compute the variance \(\mathbb{V}[X]\).
- Returns
The variance of the different variables.
- Return type
- compute_variation_coefficient()¶
Compute the coefficient of variation \(CoV[X]\).
This is the standard deviation normalized by the expectation: \(CoV[X]=\mathbb{E}[S]/\mathbb{E}[X]\).
- Returns
The coefficient of variation of the different variables.
- Return type
- SYMBOLS = {'a_value': 'Aval', 'b_value': 'Bval', 'margin': 'Margin', 'maximum': 'Max', 'mean': 'E', 'mean_std': 'E_StD', 'median': 'Med', 'minimum': 'Min', 'moment': 'M', 'percentile': 'p', 'probability': 'P', 'quantile': 'Q', 'quartile': 'q', 'range': 'R', 'standard_deviation': 'StD', 'tolerance_interval': 'TI', 'variance': 'V', 'variation_coefficient': 'CoV'}¶
- dataset: gemseo.core.dataset.Dataset¶
The dataset.