Source code for gemseo.algos.opt.lib_scipy

# Copyright 2021 IRT Saint Exupéry, https://www.irt-saintexupery.com
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU Lesser General Public
# License version 3 as published by the Free Software Foundation.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
# Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with this program; if not, write to the Free Software Foundation,
# Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
# Contributors:
#    INITIAL AUTHORS - initial API and implementation and/or initial
#                           documentation
#        :author: Damien Guenot
#    OTHER AUTHORS   - MACROSCOPIC CHANGES
#         Francois Gallard : refactoring for v1, May 2016
"""scipy.optimize optimization library wrapper."""
from __future__ import annotations

import logging
from dataclasses import dataclass
from typing import Any

from numpy import isfinite
from numpy import ndarray
from numpy import real
from scipy import optimize

from gemseo.algos.opt.opt_lib import OptimizationAlgorithmDescription
from gemseo.algos.opt.opt_lib import OptimizationLibrary
from gemseo.algos.opt_result import OptimizationResult

LOGGER = logging.getLogger(__name__)


[docs]@dataclass class SciPyAlgorithmDescription(OptimizationAlgorithmDescription): """The description of an optimization algorithm from the SciPy library.""" library_name: str = "SciPy"
[docs]class ScipyOpt(OptimizationLibrary): """Scipy optimization library interface. See OptimizationLibrary. """ LIB_COMPUTE_GRAD = True OPTIONS_MAP = { # Available only in the doc ! OptimizationLibrary.LS_STEP_NB_MAX: "maxls", OptimizationLibrary.LS_STEP_SIZE_MAX: "stepmx", OptimizationLibrary.MAX_FUN_EVAL: "maxfun", OptimizationLibrary.PG_TOL: "gtol", } LIBRARY_NAME = "SciPy" def __init__(self): """Constructor. Generate the library dict, contains the list of algorithms with their characteristics: - does it require gradient - does it handle equality constraints - does it handle inequality constraints """ super().__init__() doc = "https://docs.scipy.org/doc/scipy/reference/" self.descriptions = { "SLSQP": SciPyAlgorithmDescription( algorithm_name="SLSQP", description=( "Sequential Least-Squares Quadratic Programming (SLSQP) " "implemented in the SciPy library" ), handle_equality_constraints=True, handle_inequality_constraints=True, internal_algorithm_name="SLSQP", require_gradient=True, positive_constraints=True, website=f"{doc}optimize.minimize-slsqp.html", ), "L-BFGS-B": SciPyAlgorithmDescription( algorithm_name="L-BFGS-B", description=( "Limited-memory BFGS algorithm implemented in SciPy library" ), internal_algorithm_name="L-BFGS-B", require_gradient=True, website=f"{doc}generated/scipy.optimize.fmin_l_bfgs_b.html", ), "TNC": SciPyAlgorithmDescription( algorithm_name="TNC", description=( "Truncated Newton (TNC) algorithm implemented in SciPy library" ), internal_algorithm_name="TNC", require_gradient=True, website=f"{doc}optimize.minimize-tnc.html", ), } def _get_options( self, max_iter: int = 999, ftol_rel: float = 1e-9, ftol_abs: float = 1e-9, xtol_rel: float = 1e-9, xtol_abs: float = 1e-9, max_ls_step_size: float = 0.0, max_ls_step_nb: int = 20, max_fun_eval: int = 999, max_time: float = 0, pg_tol: float = 1e-5, disp: int = 0, maxCGit: int = -1, # noqa: N803 eta: float = -1.0, factr: float = 1e7, maxcor: int = 20, normalize_design_space: int = True, eq_tolerance: float = 1e-2, ineq_tolerance: float = 1e-4, stepmx: float = 0.0, minfev: float = 0.0, scale: float | None = None, rescale: float = -1, offset: float | None = None, **kwargs: Any, ) -> dict[str, Any]: r"""Set the options default values. To get the best and up to date information about algorithms options, go to scipy.optimize documentation: https://docs.scipy.org/doc/scipy/reference/tutorial/optimize.html Args: max_iter: The maximum number of iterations, i.e. unique calls to f(x). ftol_rel: A stop criteria, the relative tolerance on the objective function. If abs(f(xk)-f(xk+1))/abs(f(xk))<= ftol_rel: stop. ftol_abs: A stop criteria, the absolute tolerance on the objective function. If abs(f(xk)-f(xk+1))<= ftol_rel: stop. xtol_rel: A stop criteria, the relative tolerance on the design variables. If norm(xk-xk+1)/norm(xk)<= xtol_rel: stop. xtol_abs: A stop criteria, absolute tolerance on the design variables. If norm(xk-xk+1)<= xtol_abs: stop. max_ls_step_size: The maximum step for the line search. max_ls_step_nb: The maximum number of line search steps per iteration. max_fun_eval: The internal stop criteria on the number of algorithm outer iterations. max_time: The maximum runtime in seconds, disabled if 0. pg_tol: A stop criteria on the projected gradient norm. disp: The display information flag. maxCGit: The maximum Conjugate Gradient internal solver iterations. eta: The severity of the line search, specific to the TNC algorithm. factr: A stop criteria on the projected gradient norm, stop if max_i (grad_i)<eps_mach \* factr, where eps_mach is the machine precision. maxcor: The maximum BFGS updates. normalize_design_space: If True, scales variables to [0, 1]. eq_tolerance: The equality tolerance. ineq_tolerance: The inequality tolerance. stepmx: The maximum step for the line search. minfev: The minimum function value estimate. scale: The scaling factor to apply to each variable. If None, the factors are up-low for interval bounded variables and 1+|x| for the others. rescale: The scaling factor (in log10) used to trigger f value rescaling. offset: Value to subtract from each variable. If None, the offsets are (up+low)/2 for interval bounded variables and x for the others. **kwargs: The other algorithm options. """ nds = normalize_design_space popts = self._process_options( max_iter=max_iter, ftol_rel=ftol_rel, ftol_abs=ftol_abs, xtol_rel=xtol_rel, xtol_abs=xtol_abs, max_time=max_time, max_ls_step_size=max_ls_step_size, max_ls_step_nb=max_ls_step_nb, max_fun_eval=max_fun_eval, pg_tol=pg_tol, disp=disp, maxCGit=maxCGit, # noqa: N803 eta=eta, factr=factr, maxcor=maxcor, normalize_design_space=nds, ineq_tolerance=ineq_tolerance, eq_tolerance=eq_tolerance, stepmx=stepmx, minfev=minfev, scale=scale, rescale=rescale, offset=offset, **kwargs, ) return popts def _run(self, **options: Any) -> OptimizationResult: """Run the algorithm, to be overloaded by subclasses. Args: **options: The options for the algorithm. Returns: The optimization result. """ # remove normalization from options for algo normalize_ds = options.pop(self.NORMALIZE_DESIGN_SPACE_OPTION, True) # Get the normalized bounds: x_0, l_b, u_b = self.get_x0_and_bounds_vects(normalize_ds) # Replace infinite values with None: l_b = [val if isfinite(val) else None for val in l_b] u_b = [val if isfinite(val) else None for val in u_b] bounds = list(zip(l_b, u_b)) def real_part_fun( x: ndarray, ) -> int | float: """Wrap the function and return the real part. Args: x: The values to be given to the function. Returns: The real part of the evaluation of the objective function. """ return real(self.problem.objective.func(x)) fun = real_part_fun constraints = self.get_right_sign_constraints() cstr_scipy = [] for cstr in constraints: c_scipy = {"type": cstr.f_type, "fun": cstr.func, "jac": cstr.jac} cstr_scipy.append(c_scipy) jac = self.problem.objective.jac # |g| is in charge of ensuring max iterations, and # xtol, ftol, since it may # have a different definition of iterations, such as for SLSQP # for instance which counts duplicate calls to x as a new iteration options["maxiter"] = 10000000 # Deactivate scipy stop criteria to use |g|' ones options["ftol"] = 0.0 options["xtol"] = 0.0 options.pop(self.F_TOL_ABS) options.pop(self.X_TOL_ABS) options.pop(self.F_TOL_REL) options.pop(self.X_TOL_REL) options.pop(self.MAX_TIME) options.pop(self.MAX_ITER) if self.algo_name != "TNC": options.pop("xtol") opt_result = optimize.minimize( fun=fun, x0=x_0, method=self.internal_algo_name, jac=jac, bounds=bounds, constraints=cstr_scipy, tol=None, options=options, ) return self.get_optimum_from_database(opt_result.message, opt_result.status)