# Copyright 2021 IRT Saint Exupéry, https://www.irt-saintexupery.com
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU Lesser General Public
# License version 3 as published by the Free Software Foundation.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
# Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with this program; if not, write to the Free Software Foundation,
# Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
# Contributors:
# INITIAL AUTHORS - initial API and implementation and/or initial
# documentation
# :author: Francois Gallard
# OTHER AUTHORS - MACROSCOPIC CHANGES
"""A scenario whose driver is a design of experiments."""
from __future__ import annotations
import logging
from typing import Any
from typing import Sequence
from gemseo.algos.design_space import DesignSpace
from gemseo.algos.doe.doe_factory import DOEFactory
from gemseo.core.dataset import Dataset
from gemseo.core.discipline import MDODiscipline
from gemseo.core.scenario import Scenario
# The detection of formulations requires to import them,
# before calling get_formulation_from_name
LOGGER = logging.getLogger(__name__)
[docs]class DOEScenario(Scenario):
"""A multidisciplinary scenario to be executed by a design of experiments (DOE).
A :class:`.DOEScenario` is a particular :class:`.Scenario` whose driver is a DOE.
This DOE must be implemented in a :class:`.DOELibrary`.
"""
seed: int
"""The seed used by the random number generators for replicability."""
# Constants for input variables in json schema
N_SAMPLES = "n_samples"
EVAL_JAC = "eval_jac"
SEED = "seed"
_ATTR_TO_SERIALIZE = Scenario._ATTR_TO_SERIALIZE + ("seed",)
def __init__(
self,
disciplines: Sequence[MDODiscipline],
formulation: str,
objective_name: str | Sequence[str],
design_space: DesignSpace,
name: str | None = None,
grammar_type: str = MDODiscipline.JSON_GRAMMAR_TYPE,
**formulation_options: Any,
) -> None:
"""
Args:
disciplines: The disciplines
used to compute the objective, constraints and observables
from the design variables.
formulation: The name of the MDO formulation,
also the name of a class inheriting from :class:`.MDOFormulation`.
objective_name: The name of the objective.
If a sequence is passed, a vector objective function is created.
design_space: The design space.
name: The name to be given to this scenario.
If None, use the name of the class.
grammar_type: The type of grammar to use for IO declaration
, e.g. JSON_GRAMMAR_TYPE or SIMPLE_GRAMMAR_TYPE.
**formulation_options: The options
to be passed to the :class:`.MDOFormulation`.
"""
# This loads the right json grammars from class name
super().__init__(
disciplines,
formulation,
objective_name,
design_space,
name,
grammar_type,
**formulation_options,
)
self.seed = 0
self.default_inputs = {self.EVAL_JAC: False, self.ALGO: "lhs"}
self.__samples = None
def _init_algo_factory(self) -> None:
self._algo_factory = DOEFactory()
def _run_algorithm(self) -> None:
self.seed += 1
algo_name = self.local_data[self.ALGO]
options = self.local_data.get(self.ALGO_OPTIONS)
if options is None:
options = {}
# Store the lib in case we rerun the same algorithm,
# for multilevel scenarios for instance
# This significantly speedups the process
# also because of the option grammar that is long to create
if self._algo_name is not None and self._algo_name == algo_name:
lib = self._lib
else:
lib = self._algo_factory.create(algo_name)
lib.init_options_grammar(algo_name)
self._lib = lib
self._algo_name = algo_name
if self.SEED in lib.opt_grammar and self.SEED not in options:
options[self.SEED] = self.seed
if self.N_SAMPLES in lib.opt_grammar:
n_samples = self.local_data.get(self.N_SAMPLES)
if self.N_SAMPLES in options:
LOGGER.warning(
"Double definition of algorithm option n_samples, keeping value: %s.",
n_samples,
)
options[self.N_SAMPLES] = n_samples
self.optimization_result = lib.execute(self.formulation.opt_problem, **options)
self.__samples = lib.samples
return self.optimization_result
def _update_grammar_input(self) -> None:
self.input_grammar.update(dict(algo=str, n_samples=int, algo_options=dict))
for name in ("n_samples", "algo_options"):
self.input_grammar.required_names.remove(name)
[docs] def export_to_dataset(
self,
name: str | None = None,
by_group: bool = True,
categorize: bool = True,
opt_naming: bool = True,
export_gradients: bool = False,
) -> Dataset:
return self.formulation.opt_problem.export_to_dataset(
name=name,
by_group=by_group,
categorize=categorize,
opt_naming=opt_naming,
export_gradients=export_gradients,
input_values=self.__samples,
)