Source code for gemseo.core.mdofunctions.func_operations
# Copyright 2021 IRT Saint Exupéry, https://www.irt-saintexupery.com
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU Lesser General Public
# License version 3 as published by the Free Software Foundation.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
# Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with this program; if not, write to the Free Software Foundation,
# Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
"""
Functional operations
*********************
"""
from __future__ import annotations
from numpy import delete
from numpy import insert
from numpy import ndarray
from gemseo.core.mdofunctions.mdo_function import MDOFunction
[docs]class RestrictedFunction(MDOFunction):
"""Restrict an MDOFunction to a subset of its input vector.
Fixes the rest of the indices.
"""
def __init__(
self,
orig_function: MDOFunction,
restriction_indices: ndarray,
restriction_values: ndarray,
) -> None:
"""
Args:
orig_function: The original function to restrict.
restriction_indices: The indices array of the input vector to fix.
restriction_values: The values of the input vector at the indices,
'restriction_indices' are set to 'restriction_values'.
Raises:
ValueError: If the shape of the restriction values is not consistent
with the shape of the restriction indices.
"""
if not restriction_indices.shape == restriction_values.shape:
raise ValueError("Inconsistent shapes for restriction values and indices.")
self.restriction_values = restriction_values
self._restriction_indices = restriction_indices
self._orig_function = orig_function
name = str(orig_function.name) + "_restr"
super().__init__(
self.__restricted_function,
name,
jac=self.__restricted_jac,
f_type=orig_function.f_type,
expr=orig_function.expr,
args=orig_function.args,
dim=orig_function.dim,
outvars=orig_function.outvars,
)
def __restricted_function(self, x_vect: ndarray) -> MDOFunction:
"""Wrap the provided function in order to be given to the optimizer.
Args:
x_vect: The design variables values.
Returns:
The evaluation of the function at x_vect.
"""
x_full = insert(x_vect, self._restriction_indices, self.restriction_values)
return self._orig_function(x_full)
def __restricted_jac(self, x_vect: ndarray) -> MDOFunction.jac:
"""Wrap the provided Jacobian in order to be given to the optimizer.
Args:
x_vect: The design variables values.
Returns:
The evaluation of the Jacobian at x_vect.
"""
x_full = insert(x_vect, self._restriction_indices, self.restriction_values)
jac = self._orig_function.jac(x_full)
jac = delete(jac, self._restriction_indices, axis=0)
return jac
[docs]class LinearComposition(MDOFunction):
"""Compose a function with a linear operator defined by a matrix.
Compute orig_f(Mat.dot(x)).
"""
def __init__(
self,
orig_function: MDOFunction,
interp_operator: ndarray,
):
"""Constructor.
Args:
orig_function: The original function to be restricted.
interp_operator: The operator matrix, the output of the
function will be f(interp_operator.dot(x)).
"""
self._orig_function = orig_function
self._interp_operator = interp_operator
self._orig_function = orig_function
super().__init__(
self._restricted_function,
str(orig_function.name) + "_comp",
jac=self._restricted_jac,
f_type=orig_function.f_type,
expr="Mat*" + str(orig_function.expr),
args=orig_function.args,
dim=orig_function.dim,
outvars=orig_function.outvars,
)
def _restricted_function(self, x_vect: ndarray) -> MDOFunction:
"""Wrap the provided function in order to be given to the optimizer.
Args:
x_vect: The design variable values.
Returns:
The evaluation of the function at x_vect.
"""
x_full = self._interp_operator.dot(x_vect)
return self._orig_function(x_full)
def _restricted_jac(self, x_vect: ndarray) -> MDOFunction.jac:
"""Wrap the provided Jacobian in order to be given to the optimizer.
Args:
x_vect: The design variable values.
Returns:
The evaluation of the function at x_vect.
"""
x_full = self._interp_operator.dot(x_vect)
jac = self._orig_function.jac(x_full)
return self._interp_operator.T.dot(jac)