Source code for gemseo.core.mdofunctions.norm_function

# Copyright 2021 IRT Saint Exupéry, https://www.irt-saintexupery.com
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU Lesser General Public
# License version 3 as published by the Free Software Foundation.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
# Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with this program; if not, write to the Free Software Foundation,
# Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
# Contributors:
#    INITIAL AUTHORS - API and implementation and/or documentation
#        :author: Francois Gallard
#    OTHER AUTHORS   - MACROSCOPIC CHANGES
#        :author: Benoit Pauwels - Stacked data management
#               (e.g. iteration index)
#        :author: Gilberto Ruiz Jimenez
"""An MDOFunction subclass to support formulations."""
from __future__ import annotations

import logging
from typing import TYPE_CHECKING

from numpy import ndarray

from gemseo.core.mdofunctions.mdo_function import MDOFunction

if TYPE_CHECKING:
    from gemseo.algos.opt_problem import OptimizationProblem

LOGGER = logging.getLogger(__name__)


[docs]class NormFunction(MDOFunction): """An :class:`.MDOFunction` object to be evaluated from an input vector.""" def __init__( self, orig_func: MDOFunction, normalize: bool, round_ints: bool, optimization_problem: OptimizationProblem, ) -> None: """ Args: orig_func: The original function. normalize: Whether to unnormalize the input vector before evaluating the original function. round_ints: If True, then round the integer variables. optimization_problem: The optimization problem object that contains the function. Raises: ValueError: If the original function does not provide a Jacobian matrix. """ self.__normalize = normalize self.__orig_func = orig_func self.__round_ints = round_ints self.__optimization_problem = optimization_problem # For performance design_space = self.__optimization_problem.design_space self.__unnormalize_vect = design_space.unnormalize_vect self.__round_vect = design_space.round_vect self.__normalize_grad = design_space.normalize_grad self.__evaluate_orig_func = self.__orig_func.evaluate super().__init__( self._func, name=orig_func.name, jac=self._jac, f_type=orig_func.f_type, expr=orig_func.expr, args=orig_func.args, dim=orig_func.dim, outvars=orig_func.outvars, ) def _func( self, x_vect: ndarray, ) -> ndarray: """Evaluate the original function. Args: x_vect: An input vector. Returns: The value of the function at this input vector. """ if self.__normalize: x_vect = self.__unnormalize_vect(x_vect) if self.__round_ints: x_vect = self.__round_vect(x_vect) return self.__evaluate_orig_func(x_vect) def _jac( self, x_vect: ndarray, ) -> ndarray: """Evaluate the gradient of the original function. Args: x_vect: An input vector. Returns: The value of the gradient of the original function at this input vector. Raises: ValueError: If the original function does not provide a Jacobian matrix. """ if not self.__orig_func.has_jac(): raise ValueError( "Selected user gradient but function {} " "has no Jacobian matrix !".format(self.__orig_func) ) if self.__normalize: x_vect = self.__unnormalize_vect(x_vect) if self.__round_ints: x_vect = self.__round_vect(x_vect) g_u = self.__orig_func.jac(x_vect) if self.__normalize: return self.__normalize_grad(g_u) return g_u @property def expects_normalized_inputs(self) -> bool: return self.__normalize