Source code for gemseo.disciplines.linear_combination
# Copyright 2021 IRT Saint Exupéry, https://www.irt-saintexupery.com
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU Lesser General Public
# License version 3 as published by the Free Software Foundation.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
# Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with this program; if not, write to the Free Software Foundation,
# Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
"""Discipline computing a linear combination of its inputs."""
from __future__ import annotations
from typing import Iterable
from numpy import eye
from gemseo.core.discipline import MDODiscipline
[docs]class LinearCombination(MDODiscipline):
r"""Discipline computing a linear combination of its inputs.
The user can specify the coefficients related to the variables
as well as the offset.
E.g.,
a discipline
computing the output :math:`y`
from :math:`d` inputs :math:`x_1,\ldots,x_d`
with the function
:math:`f(x_1,\ldots,x_d)=a_0+\sum_{i=1}^d a_i x_i`.
When the offset :math:`a_0` is equal to 0
and the coefficients :math:`a_1,\ldots,a_d` are equal to 1,
the discipline simply sums the inputs.
Note:
By default,
the :class:`.LinearCombination` simply sums the inputs.
Example:
>>> discipline = LinearCombination(["alpha", "beta", "gamma"], "delta",
input_coefficients={"beta": 2.})
>>> input_data = {"alpha": array([1.0]), "beta": array([2.0])}
>>> discipline.execute(input_data)
>>> delta = discipline.local_data["delta"] # delta = array([5.])
"""
def __init__(
self,
input_names: Iterable[str],
output_name: str,
input_coefficients: dict[str, float] = None,
offset: float = 0.0,
):
"""# noqa: D205 D212 D415
Args:
input_names: The names of input variables.
output_name: The name of the output variable.
input_coefficients: The coefficients related to the input variables.
If ``None``, use 1 for all the input variables.
offset: The output value when all the input variables are equal to zero.
"""
super().__init__()
self.__offset = offset
self.__coefficients = input_coefficients
self.__output_name = output_name
self.input_grammar.update(list(input_names))
self.output_grammar.update([output_name])
self.__coefficients = {name: 1.0 for name in self.get_input_data_names()}
if input_coefficients:
self.__coefficients.update(input_coefficients)
def _run(self) -> None:
self.local_data[self.__output_name] = self.__offset
for input_name, input_value in self.get_input_data().items():
self.local_data[self.__output_name] += (
self.__coefficients[input_name] * input_value
)
def _compute_jacobian(
self,
inputs: Iterable[str] | None = None,
outputs: Iterable[str] | None = None,
) -> None:
self._init_jacobian(with_zeros=True)
self.jac = {}
jac = self.jac[self.__output_name] = {}
one_matrix = eye(self.local_data[self.__output_name].size)
for input_name in self.get_input_data_names():
jac[input_name] = self.__coefficients[input_name] * one_matrix