Source code for gemseo.mlearning.transform.dimension_reduction.dimension_reduction
# Copyright 2021 IRT Saint Exupéry, https://www.irt-saintexupery.com
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU Lesser General Public
# License version 3 as published by the Free Software Foundation.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
# Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with this program; if not, write to the Free Software Foundation,
# Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
# Contributors:
# INITIAL AUTHORS - initial API and implementation and/or initial
# documentation
# :author: Matthias De Lozzo, Syver Doving Agdestein
# OTHER AUTHORS - MACROSCOPIC CHANGES
"""Dimension reduction as a generic transformer.
The :class:`.DimensionReduction` class implements the concept of dimension reduction.
.. seealso::
:mod:`~gemseo.mlearning.transform.dimension_reduction.pca`
"""
from __future__ import annotations
from typing import NoReturn
from numpy import ndarray
from gemseo.mlearning.transform.transformer import Transformer
from gemseo.mlearning.transform.transformer import TransformerFitOptionType
[docs]class DimensionReduction(Transformer):
"""Dimension reduction."""
def __init__(
self,
name: str = "DimensionReduction",
n_components: int | None = None,
**parameters: bool | int | float | ndarray | str | None,
) -> None:
"""
Args:
name: A name for this transformer.
n_components: The number of components of the latent space.
If ``None``,
use the maximum number allowed by the technique,
typically ``min(n_samples, n_features)``.
**parameters: The parameters of the transformer.
"""
super().__init__(name, n_components=n_components, **parameters)
def _fit(
self,
data: ndarray,
*args: TransformerFitOptionType,
) -> NoReturn:
"""Fit the transformer to the data.
Args:
data: The data to be fitted.
"""
raise NotImplementedError
@property
def n_components(self) -> int:
"""The number of components."""
return self.parameters["n_components"]