Source code for gemseo.mlearning.transform.dimension_reduction.pca

# Copyright 2021 IRT Saint Exupéry, https://www.irt-saintexupery.com
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU Lesser General Public
# License version 3 as published by the Free Software Foundation.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
# Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with this program; if not, write to the Free Software Foundation,
# Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
# Contributors:
#    INITIAL AUTHORS - initial API and implementation and/or initial
#                         documentation
#        :author: Syver Doving Agdestein
#    OTHER AUTHORS   - MACROSCOPIC CHANGES
"""The Principal Component Analysis (PCA) to reduce the dimension of a variable.

The :class:`.PCA` class wraps the PCA from Scikit-learn.

Dependence
----------
This dimension reduction algorithm relies on the PCA class
of the `scikit-learn library <https://scikit-learn.org/stable/modules/
generated/sklearn.decomposition.PCA.html>`_.
"""
from __future__ import annotations

from numpy import ndarray
from numpy import sqrt
from sklearn.decomposition import PCA as SKLPCA

from gemseo.mlearning.transform.dimension_reduction.dimension_reduction import (
    DimensionReduction,
)
from gemseo.mlearning.transform.transformer import TransformerFitOptionType


[docs]class PCA(DimensionReduction): """Principal component dimension reduction algorithm.""" def __init__( self, name: str = "PCA", n_components: int | None = None, **parameters: float | int | str | bool | None, ) -> None: """ Args: **parameters: The optional parameters for sklearn PCA constructor. """ super().__init__(name, n_components=n_components, **parameters) self.algo = SKLPCA(n_components, **parameters) def _fit( self, data: ndarray, *args: TransformerFitOptionType, ) -> None: self.algo.fit(data) self.parameters["n_components"] = self.algo.n_components_
[docs] def transform( self, data: ndarray, ) -> ndarray: return self.algo.transform(data)
[docs] def inverse_transform( self, data: ndarray, ) -> ndarray: return self.algo.inverse_transform(data)
[docs] def compute_jacobian( self, data: ndarray, ) -> ndarray: return self.algo.components_
[docs] def compute_jacobian_inverse( self, data: ndarray, ) -> ndarray: return self.algo.components_.T
@property def components(self) -> ndarray: """The principal components.""" return sqrt(self.algo.singular_values_) * self.algo.components_.T