Source code for gemseo.mlearning.transform.power.power
# Copyright 2021 IRT Saint Exupéry, https://www.irt-saintexupery.com
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU Lesser General Public
# License version 3 as published by the Free Software Foundation.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
# Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with this program; if not, write to the Free Software Foundation,
# Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
# Contributors:
# INITIAL AUTHORS - initial API and implementation and/or initial
# documentation
# :author: Matthias De Lozzo, Gilberto Ruiz Jimenez
# OTHER AUTHORS - MACROSCOPIC CHANGES
"""A power transform, either Yeo-Johnson or Box-Cox.
Dependence
----------
This transformation algorithm relies on the ``PowerTransformer`` class
of `scikit-learn <https://scikit-learn.org/
stable/modules/generated/
sklearn.preprocessing.PowerTransformer.html>`_.
"""
from __future__ import annotations
from typing import ClassVar
from numpy import ndarray
from sklearn.preprocessing import PowerTransformer
from gemseo.mlearning.transform.transformer import Transformer
from gemseo.mlearning.transform.transformer import TransformerFitOptionType
[docs]class Power(Transformer):
"""A power transformation."""
lambdas_: ndarray
"""The parameters of the power transformation for the selected features."""
_TRANSFORMER_NAME: ClassVar[str] = "yeo-johnson"
"""The name of the transformer in scikit-learn."""
def __init__(
self,
name: str | None = None,
standardize: bool = True,
) -> None:
"""
Args:
name: A name for this transformer. If ``None``, use the class name.
standardize: Whether to apply zero-mean, unit-variance
normalization to the transformed output.
"""
if name is None:
name = self.__class__.__name__
super().__init__(name, standardize=standardize)
self.__power_transformer = PowerTransformer(
method=self._TRANSFORMER_NAME,
standardize=standardize,
)
def _fit(
self,
data: ndarray,
*args: TransformerFitOptionType,
) -> None:
self.__power_transformer.fit(data)
self.lambdas_ = self.__power_transformer.lambdas_