Source code for gemseo.post.dataset.surfaces
# Copyright 2021 IRT Saint Exupéry, https://www.irt-saintexupery.com
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU Lesser General Public
# License version 3 as published by the Free Software Foundation.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
# Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with this program; if not, write to the Free Software Foundation,
# Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
# Contributors:
# INITIAL AUTHORS - initial API and implementation and/or initial
# documentation
# :author: Matthias De Lozzo
# OTHER AUTHORS - MACROSCOPIC CHANGES
"""Draw surfaces from a :class:`.Dataset`.
A :class:`.Surfaces` plot represents samples
of a functional variable :math:`z(x,y)` discretized over a 2D mesh.
Both evaluations of :math:`z` and mesh are stored in a :class:`.Dataset`,
:math:`z` as a parameter and the mesh as a metadata.
"""
from __future__ import annotations
from typing import Sequence
import matplotlib.pyplot as plt
import matplotlib.tri as mtri
from matplotlib.axes import Axes
from matplotlib.figure import Figure
from gemseo.core.dataset import Dataset
from gemseo.post.dataset.dataset_plot import DatasetPlot
[docs]class Surfaces(DatasetPlot):
"""Plot surfaces y_i over the mesh x."""
def __init__(
self,
dataset: Dataset,
mesh: str,
variable: str,
samples: Sequence[int] | None = None,
add_points: bool = False,
fill: bool = True,
levels: int | Sequence[int] = None,
) -> None:
"""
Args:
mesh: The name of the dataset metadata corresponding to the mesh.
variable: The name of the variable for the x-axis.
samples: The indices of the samples to plot. If None, plot all samples.
add_points: If True then display the samples over the surface plot.
fill: Whether to generate a filled contour plot.
levels: Either the number of contour lines
or the values of the contour lines in increasing order.
If ``None``, select them automatically.
"""
super().__init__(
dataset,
mesh=mesh,
variable=variable,
samples=samples,
add_points=add_points,
fill=fill,
levels=levels,
)
def _plot(
self,
fig: None | Figure = None,
axes: None | Axes = None,
) -> list[Figure]:
mesh = self._param.mesh
variable = self._param.variable
samples = self._param.samples
x_data = self.dataset.metadata[mesh][:, 0]
y_data = self.dataset.metadata[mesh][:, 1]
if samples is not None:
samples = self.dataset[variable][samples, :]
else:
samples = self.dataset[variable]
options = {"cmap": self.colormap}
levels = self._param.levels
if levels is not None:
options["levels"] = levels
figs = []
for sample, sample_name in zip(samples, self.dataset.row_names):
fig = plt.figure(figsize=self.fig_size)
axes = fig.add_subplot(1, 1, 1)
triangle = mtri.Triangulation(x_data, y_data)
if self._param.fill:
tcf = axes.tricontourf(triangle, sample, **options)
else:
tcf = axes.tricontour(triangle, sample, **options)
if self._param.add_points:
axes.scatter(x_data, y_data, color=self.color or None)
axes.set_xlabel(self.xlabel)
axes.set_ylabel(self.ylabel)
axes.set_title(f"{self.title or self.zlabel or variable} - {sample_name}")
fig.colorbar(tcf)
figs.append(fig)
return figs