Source code for gemseo.problems.propane.propane

# Copyright 2021 IRT Saint Exupéry, https://www.irt-saintexupery.com
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU Lesser General Public
# License version 3 as published by the Free Software Foundation.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
# Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with this program; if not, write to the Free Software Foundation,
# Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
# Contributors:
#    INITIAL AUTHORS - initial API and implementation and/or
#    initial documentation
#        :author: Charlie Vanaret
#    OTHER AUTHORS   - MACROSCOPIC CHANGES
# from Tedford2010
# Propane combustion, p12
r"""
The propane combustion MDO problem
**********************************

The Propane MDO problem can be found in :cite:`Padula1996`
and :cite:`TedfordMartins2006`. It represents the chemical equilibrium
reached during the combustion of propane in air.
Variables are assigned to represent each of the ten combustion products
as well as the sum of the products.

The optimization problem is as follows:


.. math::

   \begin{aligned}
   \text{minimize the objective function } &
   f_2 + f_6 + f_7 + f_9 \\
   \text{with respect to the design variables } &
   x_{1},\,x_{3},\,x_{6},\,x_{7} \\
   \text{subject to the general constraints }
   & f_2(x) \geq 0\\
   & f_6(x) \geq 0\\
   & f_7(x) \geq 0\\
   & f_9(x) \geq 0\\
   \text{subject to the bound constraints }
   & x_{1} \geq 0\\
   & x_{3} \geq 0\\
   & x_{6} \geq 0\\
   & x_{7} \geq 0\\
   \end{aligned}

where the System Discipline consists of computing the following expressions:

.. math::

   \begin{aligned}
   f_2(x) & = & 2x_1 + x_2 + x_4 + x_7 + x_8 + x_9 + 2x_{10} - R, \\
   f_6(x) & = & K_6x_2^{1/2}x_4^{1/2} - x_1^{1/2}x_6(p/x_{11})^{1/2}, \\
   f_7(x) & = & K_7x_1^{1/2}x_2^{1/2} - x_4^{1/2}x_7(p/x_{11})^{1/2}, \\
   f_9(x) & = & K_9x_1x_3^{1/2} - x_4x_9(p/x_{11})^{1/2}. \\
   \end{aligned}


Discipline 1 computes :math:`(x_{2}, x_{4})`
by satisfying the following equations:

.. math::

   \begin{aligned}
   x_1 + x_4 - 3 &=& 0,\\
   K_5x_2x_4 - x_1x_5 &=& 0.\\
   \end{aligned}

Discipline 2 computes :math:`(x_2, x_4)` such that:

.. math::

   \begin{aligned}
   K_8x_1 + x_4x_8(p/x_{11}) &=& 0,\\
   K_{10}x_{1}^{2} - x_4^2x_{10}(p/x_{11}) &=& 0.\\
   \end{aligned}

and Discipline 3 computes :math:`(x_5, x_9, x_{11})` by solving:

.. math::

   \begin{aligned}
   2x_2 + 2x_5 + x_6 + x_7 - 8&=& 0,\\
   2x_3 + x_9 - 4R &=& 0, \\
   x_{11} - \sum_{j=1}^{10} x_j &=& 0. \\
   \end{aligned}
"""
from __future__ import annotations

from cmath import sqrt
from pathlib import Path

from numpy import array
from numpy import complex128
from numpy import ndarray
from numpy import ones
from numpy import zeros

from gemseo.algos.design_space import DesignSpace
from gemseo.core.discipline import MDODiscipline


[docs]def get_design_space(to_complex=True): """Read the design space file. Args: to_complex: Whether the current design point is a complex vector. """ ds_read = DesignSpace.read_from_txt( Path(__file__).parent / "propane_design_space.txt" ) if to_complex: ds_read.to_complex() return ds_read
[docs]class PropaneReaction(MDODiscipline): """Propane's objective and constraints discipline. This discipline's outputs are the objective function and partial terms used in inequality constraints. Note: The equations have been decoupled (y_i = y_i(x_shared)). Otherwise, the solvers may find iterates for which discipline analyses are not computable. """ def __init__(self) -> None: super().__init__(auto_detect_grammar_files=True) self.default_inputs = { "x_shared": ones(4, dtype=complex128), "y_1": ones(2, dtype=complex128), "y_2": ones(2, dtype=complex128), "y_3": ones(3, dtype=complex128), } self.re_exec_policy = self.RE_EXECUTE_DONE_POLICY def _run(self) -> None: inputs = ["y_1", "y_2", "y_3", "x_shared"] y_1, y_2, y_3, x_shared = self.get_inputs_by_name(inputs) f_2 = array([self.f_2(x_shared, y_1, y_2, y_3)], dtype=complex128) f_6 = array([self.f_6(x_shared, y_1, y_3)], dtype=complex128) f_7 = array([self.f_7(x_shared, y_1, y_3)], dtype=complex128) f_9 = array([self.f_9(x_shared, y_1, y_3)], dtype=complex128) obj = f_2 + f_7 + f_6 + f_9 # constraints on f_2, f_6, f_7, f_9 must be nonnegative # in original problem don't forget to take the opposite self.store_local_data(f_2=-f_2, f_6=-f_6, f_7=-f_7, f_9=-f_9, obj=obj)
[docs] @classmethod def f_2( cls, x_shared: ndarray, y_1: ndarray, y_2: ndarray, y_3: ndarray ) -> ndarray: """Compute the first term of the objective function. It is also a non-negative constraint at system level. Args: x_shared: The shared design variables. y_1: The first coupling variable. y_2: The second coupling variable. y_3: The third coupling variable. Returns: The first term of the objective function. """ return ( 2.0 * x_shared[0] + y_1[0] + y_1[1] + x_shared[3] + y_2[1] + y_3[0] + 2.0 * y_3[1] - 10.0 )
[docs] @classmethod def f_6(cls, x_shared, y_1, y_3): """Compute the second term of the objective function. It is also a non-negative constraint at system level. Args: x_shared: The shared design variables. y_1: The first coupling variable. y_3: The third coupling variable. Returns: The second term of the objective function. """ return sqrt(y_1[0] * y_1[1]) - sqrt(40.0 * x_shared[0] / y_3[2]) * x_shared[2]
[docs] @classmethod def f_7(cls, x_shared, y_1, y_3): """Compute the third term of the objective function. It is also a non-negative constraint at system level. Args: x_shared: The shared design variables. y_1: The first coupling variable. y_3: The third coupling variable. Returns: The third term of the objective function. """ return sqrt(x_shared[0] * y_1[0]) - sqrt(40.0 * y_1[1] / y_3[2]) * x_shared[3]
[docs] @classmethod def f_9(cls, x_shared, y_1, y_3): """Compute the fourth term of the objective function. It is also a non-negative constraint at system level. Args: x_shared: The shared design variables. y_1: The first coupling variable. y_3: The third coupling variable. Returns: The fourth term of the objective function. """ return x_shared[0] * sqrt(x_shared[1]) - y_1[1] * y_3[0] * sqrt(40.0 / y_3[2])
[docs]class PropaneComb1(MDODiscipline): """The first set of equations of the propane combustion. This discipline is characterized by two coupling equations in functional form. """ def __init__(self) -> None: super().__init__(auto_detect_grammar_files=True) self.default_inputs = {"x_shared": ones(4, dtype=complex128)} self.re_exec_policy = self.RE_EXECUTE_DONE_POLICY def _run(self) -> None: x_shared = self.get_inputs_by_name("x_shared") y_1_out = zeros(2, dtype=complex128) y_1_out[0] = self.compute_y0(x_shared) y_1_out[1] = self.compute_y1(x_shared) self.store_local_data(y_1=y_1_out)
[docs] @classmethod def compute_y0(cls, x_shared: ndarray) -> ndarray: """Solve the first coupling equation in functional form. Args: x_shared: The shared design variables. Returns: The coupling variable y0. """ return -x_shared[0] * (x_shared[2] + x_shared[3] - 8.0) / 6.0
[docs] @classmethod def compute_y1(cls, x_shared): """Solve the second coupling equation in functional form. Args: x_shared: The shared design variables. Returns: The coupling variable y1. """ return 3.0 - x_shared[0]
[docs]class PropaneComb2(MDODiscipline): """The second set of equations of the propane combustion. This discipline is characterized by two coupling equations in functional form. """ def __init__(self) -> None: super().__init__(auto_detect_grammar_files=True) self.default_inputs = {"x_shared": ones(4, dtype=complex128)} self.re_exec_policy = self.RE_EXECUTE_DONE_POLICY def _run(self) -> None: x_shared = self.get_inputs_by_name("x_shared") y_2_out = zeros(2, dtype=complex128) y_2_out[0] = self.compute_y2(x_shared) y_2_out[1] = self.compute_y3(x_shared) self.store_local_data(y_2=y_2_out)
[docs] @classmethod def compute_y2(cls, x_shared: ndarray) -> ndarray: """Solve the third coupling equation in functional form. Args: x_shared: The shared design variables. Returns: The coupling variable y2. """ return (x_shared[0] - 3.0) * (x_shared[2] + x_shared[3] - 8.0) / 6.0
[docs] @classmethod def compute_y3(cls, x_shared): """Solve the fourth coupling equation in functional form. Args: x_shared: The shared design variables. Returns: The coupling variable y3. """ y_3 = -(x_shared[0] - 3.0) * x_shared[0] y_3 *= x_shared[2] + x_shared[3] - 2.0 * x_shared[1] + 94.0 y_3 /= 2.0 * (400.0 * x_shared[0] ** 2.0 - 2403.0 * x_shared[0] + 3600.0) return y_3
[docs]class PropaneComb3(MDODiscipline): """The third set of equations of the propane combustion. This discipline is characterized by three coupling equations in functional form. """ def __init__(self) -> None: super().__init__(auto_detect_grammar_files=True) self.default_inputs = {"x_shared": ones(4, dtype=complex128)} self.re_exec_policy = self.RE_EXECUTE_DONE_POLICY def _run(self) -> None: x_shared = self.get_inputs_by_name("x_shared") y_3_out = zeros(3, dtype=complex128) y_3_out[0] = self.compute_y4(x_shared) y_3_out[1] = self.compute_y5(x_shared) y_3_out[2] = self.compute_y6(x_shared) self.store_local_data(y_3=y_3_out)
[docs] @classmethod def compute_y4(cls, x_shared): """Solve the fifth coupling equation in functional form. Args: x_shared: The shared design variables. Returns: The coupling variable y4. """ return 40.0 - 2.0 * x_shared[1]
[docs] @classmethod def compute_y5(cls, x_shared): """Solve the sixth coupling equation in functional form. Args: x_shared: The shared design variables. Returns: The coupling variable y5. """ y_5 = x_shared[0] ** 2 y_5 *= x_shared[2] + x_shared[3] - 2.0 * x_shared[1] + 94.0 y_5 /= 2.0 * (400.0 * x_shared[0] ** 2 - 2403.0 * x_shared[0] + 3600.0) return y_5
[docs] @classmethod def compute_y6(cls, x_shared): """Solve the seventh coupling equation in functional form. Args: x_shared: The shared design variables. Returns: The coupling variable y6. """ y_6 = 200.0 * (x_shared[0] - 3.0) ** 2 y_6 *= x_shared[2] + x_shared[3] - 2.0 * x_shared[1] + 94.0 y_6 /= 400.0 * x_shared[0] ** 2 - 2403.0 * x_shared[0] + 3600.0 return y_6
# ========================================================================= # Analytical Jacobians of f and residuals # # ========================================================================= # # def jacobian_f_x(x_shared, Y): # """ # Jacobian matrix of objective function wrt design variables # :param x_shared: vector of shared design variables # :type x_shared: ndarray # :param Y: vector of coupling variables # :type Y: ndarray # :returns: Jacobian matrix # """ # return array([ # 2. - x_shared[2] * sqrt(10. * Y[6] / x_shared[0]) / Y[6] + # sqrt(x_shared[1]) + Y[0] / (2. * sqrt(x_shared[0] * Y[0])), # x_shared[0] / (2. * sqrt(x_shared[1])), # -2. * sqrt(10. * x_shared[0] / Y[6]), # 1. - 2. * sqrt(10 * Y[1] / Y[6]) # ]) # # # # def jacobian_f_y(x_shared, Y): # """ # Jacobian matrix of objective function wrt coupling variables # :param x_shared: vector of shared design variables # :type x_shared: ndarray # :param Y: vector of coupling variables # :type Y: ndarray # :returns: Jacobian matrix # """ # return array( # [Y[1] / (2. * sqrt(Y[0] * Y[1])) + x_shared[0] / # (2. * sqrt(x_shared[0] * Y[0])) + 1., - # x_shared[3] * sqrt(10. * Y[6] / Y[1]) / Y[6] - 2. * # Y[4] * sqrt(10. / Y[6]) + # Y[0] / (2. * sqrt(Y[0] * Y[1])) + 1., 0., 1., 1. - 2. * Y[1] * # sqrt(10. / Y[6]), # 2., # (Y[1] * x_shared[3] * sqrt(10. * Y[6] / Y[1]) + x_shared[0] * # x_shared[2] * # sqrt(10. * Y[6] / x_shared[0])) / Y[6] ** 2 + Y[1] * # Y[4] * sqrt(10. / Y[6] ** 3)]) # # # def jacobian_residual_x(x_shared, Y): # """ # Jacobian matrix of residual vector wrt design variables # :param x_shared: vector of shared design variables # :type x_shared: ndarray # :param Y: vector of coupling variables # :type Y: ndarray # :returns: Jacobian matrix # """ # return array([ # [1., 0., 0., 0.], # [-Y[2], 0., 0., 0.], # [0.1, 0., 0., 0.], # [0.2 * x_shared[0], 0., 0., 0.], # [0., 0., 1., 1.], # [0., 2., 0., 0.], # [-1., -1., -1., -1.] # ]) # # # def jacobian_residual_y(x_shared, Y): # """ # Jacobian matrix of residual vector wrt coupling variables # :param x_shared: vector of shared design variables # :type x_shared: ndarray # :param Y: vector of coupling variables # :type Y: ndarray # :returns: Jacobian matrix # """ # return array([ # [0, 1., 0., 0., 0., 0., 0.], # [Y[1], Y[0], -Z[0], 0, 0, 0, 0], # [0., -40 * Y[3] / Y[6], 0., -40 * Y[1] / Y[6], 0., 0., 40 * # Y[1] * Y[3] / Y[6] ** 2], # [0., - 80 * Y[1] * Y[5] / Y[6], 0., 0., 0., -40 * Y[1] ** 2 / Y[6], # 40 * Y[1] ** 2 * Y[5] / Y[6] ** 2], # [2., 0., 2., 0., 0., 0., 0.], # [0., 0., 0., 0., 1., 0., 0.], # [-1., -1., -1., -1., -1., -1., 1.]])