Source code for gemseo.uncertainty.distributions.openturns.exponential
# Copyright 2021 IRT Saint Exupéry, https://www.irt-saintexupery.com
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU Lesser General Public
# License version 3 as published by the Free Software Foundation.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
# Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with this program; if not, write to the Free Software Foundation,
# Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
# Contributors:
# INITIAL AUTHORS - initial API and implementation and/or initial
# documentation
# :author: Matthias De Lozzo
# OTHER AUTHORS - MACROSCOPIC CHANGES
"""Class to create an exponential distribution from the OpenTURNS library.
This class inherits from :class:`.OTDistribution`.
"""
from __future__ import annotations
from gemseo.uncertainty.distributions.openturns.distribution import OTDistribution
[docs]class OTExponentialDistribution(OTDistribution):
"""Create an exponential distribution.
Example:
>>> from gemseo.uncertainty.distributions.openturns.exponential import (
... OTExponentialDistribution
... )
>>> distribution = OTExponentialDistribution('x', 2, 3)
>>> print(distribution)
Exponential(loc=3, rate=2)
"""
def __init__(
self,
variable: str,
rate: float = 1.0,
loc: float = 0.0,
dimension: int = 1,
transformation: str | None = None,
lower_bound: float | None = None,
upper_bound: float | None = None,
threshold: float = 0.5,
) -> None:
""".. # noqa: D205,D212,D415
Args:
variable: The name of the exponential random variable.
rate: The rate of the exponential random variable.
loc: The location of the exponential random variable.
dimension: The dimension of the exponential random variable.
transformation: A transformation
applied to the random variable,
e.g. 'sin(x)'. If None, no transformation.
lower_bound: A lower bound to truncate the distribution.
If None, no lower truncation.
upper_bound: An upper bound to truncate the distribution.
If None, no upper truncation.
threshold: A threshold in [0,1].
"""
standard_parameters = {self._RATE: rate, self._LOC: loc}
super().__init__(
variable,
"Exponential",
(rate, loc),
dimension,
standard_parameters,
transformation,
lower_bound,
upper_bound,
threshold,
)