Source code for gemseo.uncertainty.distributions.openturns.normal
# Copyright 2021 IRT Saint Exupéry, https://www.irt-saintexupery.com
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU Lesser General Public
# License version 3 as published by the Free Software Foundation.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
# Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with this program; if not, write to the Free Software Foundation,
# Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
# Contributors:
# INITIAL AUTHORS - initial API and implementation and/or initial
# documentation
# :author: Matthias De Lozzo
# OTHER AUTHORS - MACROSCOPIC CHANGES
"""Class to create a normal distribution from the OpenTURNS library.
This class inherits from :class:`.OTDistribution`.
"""
from __future__ import annotations
from gemseo.uncertainty.distributions.openturns.distribution import OTDistribution
[docs]class OTNormalDistribution(OTDistribution):
"""Create a normal distribution.
Example:
>>> from gemseo.uncertainty.distributions.openturns.normal import (
... OTNormalDistribution
>>> )
>>> distribution = OTNormalDistribution('x', -1, 2)
>>> print(distribution)
Normal(mu=-1, sigma=2)
"""
def __init__(
self,
variable: str,
mu: float = 0.0,
sigma: float = 1.0,
dimension: int = 1,
transformation: str | None = None,
lower_bound: float | None = None,
upper_bound: float | None = None,
threshold: float = 0.5,
) -> None:
""".. # noqa: D205,D212,D415
Args:
variable: The name of the normal random variable.
mu: The mean of the normal random variable.
sigma: The standard deviation
of the normal random variable.
dimension: The dimension of the normal random variable.
transformation: A transformation
applied to the random variable,
e.g. 'sin(x)'. If None, no transformation.
lower_bound: A lower bound to truncate the distribution.
If None, no lower truncation.
upper_bound: An upper bound to truncate the distribution.
If None, no upper truncation.
threshold: A threshold in [0,1].
"""
standard_parameters = {self._MU: mu, self._SIGMA: sigma}
super().__init__(
variable,
"Normal",
(mu, sigma),
dimension,
standard_parameters,
transformation,
lower_bound,
upper_bound,
threshold,
)