Source code for gemseo.uncertainty.distributions.scipy.triangular
# Copyright 2021 IRT Saint Exupéry, https://www.irt-saintexupery.com
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU Lesser General Public
# License version 3 as published by the Free Software Foundation.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
# Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with this program; if not, write to the Free Software Foundation,
# Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
# Contributors:
# INITIAL AUTHORS - initial API and implementation and/or initial
# documentation
# :author: Matthias De Lozzo
# OTHER AUTHORS - MACROSCOPIC CHANGES
"""Class to create a triangular distribution from the SciPy library.
This class inherits from :class:`.SPDistribution`.
"""
from __future__ import annotations
from gemseo.uncertainty.distributions.scipy.distribution import SPDistribution
[docs]class SPTriangularDistribution(SPDistribution):
"""Create a triangular distribution.
Example:
>>> from gemseo.uncertainty.distributions.scipy.triangular import (
... SPTriangularDistribution
... )
>>> distribution = SPTriangularDistribution('x', -1, 0, 1)
>>> print(distribution)
triang(lower=-1, mode=0, upper=1)
"""
def __init__(
self,
variable: str,
minimum: float = 0.0,
mode: float = 0.5,
maximum: float = 1.0,
dimension: int = 1,
) -> None:
""".. # noqa: D205,D212,D415
Args:
variable: The name of the triangular random variable.
minimum: The minimum of the triangular random variable.
mode: The mode of the triangular random variable.
maximum: The maximum of the triangular random variable.
dimension: The dimension of the triangular random variable.
"""
parameters = {
"loc": minimum,
"scale": maximum - minimum,
"c": (mode - minimum) / float(maximum - minimum),
}
standard_parameters = {
self._LOWER: minimum,
self._MODE: mode,
self._UPPER: maximum,
}
super().__init__(variable, "triang", parameters, dimension, standard_parameters)