Source code for gemseo.utils.derivatives.finite_differences

# Copyright 2021 IRT Saint Exupéry, https://www.irt-saintexupery.com
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU Lesser General Public
# License version 3 as published by the Free Software Foundation.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
# Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with this program; if not, write to the Free Software Foundation,
# Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
# Contributors:
#    INITIAL AUTHORS - API and implementation and/or documentation
#       :author : Francois Gallard
#    OTHER AUTHORS   - MACROSCOPIC CHANGES
"""Gradient approximation by finite differences."""
from __future__ import annotations

import logging
from typing import Any
from typing import Callable
from typing import Sequence

from numpy import argmax
from numpy import finfo
from numpy import full
from numpy import ndarray
from numpy import tile
from numpy import where
from numpy import zeros

from gemseo.algos.design_space import DesignSpace
from gemseo.core.parallel_execution import ParallelExecution
from gemseo.utils.derivatives.gradient_approximator import GradientApproximator

EPSILON = finfo(float).eps
LOGGER = logging.getLogger(__name__)


[docs]class FirstOrderFD(GradientApproximator): """First-order finite differences approximator. .. math:: \frac{df(x)}{dx}\approx\frac{f(x+\\delta x)-f(x)}{\\delta x} """ ALIAS = "finite_differences" def __init__( self, f_pointer: Callable[[ndarray], ndarray], step: float | ndarray = 1e-6, parallel: bool = False, design_space: DesignSpace | None = None, normalize: bool = True, **parallel_args: int | bool | float, ) -> None: super().__init__( f_pointer, step=step, parallel=parallel, design_space=design_space, normalize=normalize, **parallel_args, )
[docs] def f_gradient( self, x_vect: ndarray, step: float | ndarray | None = None, x_indices: Sequence[int] | None = None, **kwargs: Any, ) -> ndarray: return super().f_gradient(x_vect, step=step, x_indices=x_indices, **kwargs)
def _compute_parallel_grad( self, input_values: ndarray, n_perturbations: int, input_perturbations: ndarray, step: float | ndarray, **kwargs: Any, ) -> ndarray: if step is None: step = self.step if not isinstance(step, ndarray): step = full(n_perturbations, step) def func_noargs( f_input_values: ndarray, ) -> ndarray: """Call the function without explicitly passed arguments. Args: f_input_values: The input value. Return: The value of the function output. """ return self.f_pointer(f_input_values, **kwargs) functions = [func_noargs] * (n_perturbations + 1) parallel_execution = ParallelExecution(functions, **self._par_args) perturbated_inputs = [ input_perturbations[:, perturbation_index] for perturbation_index in range(n_perturbations) ] initial_and_perturbated_outputs = parallel_execution.execute( [input_values] + perturbated_inputs ) gradient = [] initial_output = initial_and_perturbated_outputs[0] for perturbation_index in range(n_perturbations): perturbated_output = initial_and_perturbated_outputs[perturbation_index + 1] g_approx = (perturbated_output - initial_output) / step[perturbation_index] gradient.append(g_approx.real) return gradient def _compute_grad( self, input_values: ndarray, n_perturbations: int, input_perturbations: ndarray, step: float | ndarray, **kwargs: Any, ) -> ndarray: if step is None: step = self.step if not isinstance(step, ndarray): step = full(n_perturbations, step) gradient = [] initial_output = self.f_pointer(input_values, **kwargs) for perturbation_index in range(n_perturbations): perturbated_output = self.f_pointer( input_perturbations[:, perturbation_index], **kwargs ) g_approx = (perturbated_output - initial_output) / step[perturbation_index] gradient.append(g_approx.real) return gradient def _get_opt_step( self, f_p: ndarray, f_0: ndarray, f_m: ndarray, numerical_error: float = EPSILON, ) -> tuple[ndarray, ndarray]: r"""Compute the optimal step of a function. This function may be a vector function. In this case, take the worst case. Args: f_p: The value of the function :math:`f` at the next step :math:`x+\\delta_x`. f_0: The value of the function :math:`f` at the current step :math:`x`. f_m: The value of the function :math:`f` at the previous step :math:`x-\\delta_x`. numerical_error: The numerical error associated to the calculation of :math:`f`. By default Machine epsilon (appx 1e-16), but can be higher. when the calculation of :math:`f` requires a numerical resolution. Returns: The errors. The optimal steps. """ n_out = f_p.size if n_out == 1: t_e, c_e, opt_step = comp_best_step( f_p, f_0, f_m, self.step, epsilon_mach=numerical_error ) if t_e is None: error = 0.0 else: error = t_e + c_e else: errors = zeros(n_out) opt_steps = zeros(n_out) for i in range(n_out): t_e, c_e, opt_steps[i] = comp_best_step( f_p[i], f_0[i], f_m[i], self.step, epsilon_mach=numerical_error ) if t_e is None: errors[i] = 0.0 else: errors[i] = t_e + c_e max_i = argmax(errors) error = errors[max_i] opt_step = opt_steps[max_i] return error, opt_step
[docs] def compute_optimal_step( self, x_vect: ndarray, numerical_error: float = EPSILON, **kwargs, ) -> tuple[ndarray, ndarray]: r"""Compute the gradient by real step. Args: x_vect: The input vector. numerical_error: The numerical error associated to the calculation of :math:`f`. By default machine epsilon (appx 1e-16), but can be higher. when the calculation of :math:`f` requires a numerical resolution. **kwargs: The additional arguments passed to the function. Returns: The optimal steps. The errors. """ n_dim = len(x_vect) x_p_arr, _ = self.generate_perturbations(n_dim, x_vect) x_m_arr, _ = self.generate_perturbations(n_dim, x_vect, step=-self.step) opt_steps = full(n_dim, self.step) errors = zeros(n_dim) comp_step = self._get_opt_step if self._parallel: def func_noargs( xval: ndarray, ) -> ndarray: """Call the function without explicitly passed arguments.""" return self.f_pointer(xval, **kwargs) functions = [func_noargs] * (n_dim + 1) parallel_execution = ParallelExecution(functions, **self._par_args) all_x = [x_vect] + [x_p_arr[:, i] for i in range(n_dim)] all_x += [x_m_arr[:, i] for i in range(n_dim)] outputs = parallel_execution.execute(all_x) f_0 = outputs[0] for i in range(n_dim): f_p = outputs[i + 1] f_m = outputs[n_dim + i + 1] errs, opt_step = comp_step( f_p, f_0, f_m, numerical_error=numerical_error ) errors[i] = errs opt_steps[i] = opt_step else: f_0 = self.f_pointer(x_vect, **kwargs) for i in range(n_dim): f_p = self.f_pointer(x_p_arr[:, i], **kwargs) f_m = self.f_pointer(x_m_arr[:, i], **kwargs) errs, opt_step = comp_step( f_p, f_0, f_m, numerical_error=numerical_error ) errors[i] = errs opt_steps[i] = opt_step self.step = opt_steps return opt_steps, errors
def _generate_perturbations( self, input_values: ndarray, input_indices: list[int], step: float, ) -> tuple[ndarray, ndarray]: input_dimension = len(input_values) n_indices = len(input_indices) input_perturbations = ( tile(input_values, n_indices).reshape((n_indices, input_dimension)).T ) if self._design_space is None: input_perturbations[input_indices, range(n_indices)] += step return input_perturbations, step else: if self._normalize: upper_bounds = self._design_space.normalize_vect( self._design_space.get_upper_bounds() ) else: upper_bounds = self._design_space.get_upper_bounds() steps = where( input_perturbations[input_indices, range(n_indices)] == upper_bounds, -step, step, ) input_perturbations[input_indices, range(n_indices)] += steps return input_perturbations, steps
[docs]def comp_best_step( f_p: ndarray, f_x: ndarray, f_m: ndarray, step: float, epsilon_mach: float = EPSILON, ) -> tuple[ndarray | None, ndarray | None, float]: r"""Compute the optimal step for finite differentiation. Applied to a forward first order finite differences gradient approximation. Require a first evaluation of the perturbed functions values. The optimal step is reached when the truncation error (cut in the Taylor development), and the numerical cancellation errors (round-off when doing :math:`f(x+step)-f(x))` are equal. See Also: https://en.wikipedia.org/wiki/Numerical_differentiation and *Numerical Algorithms and Digital Representation*, Knut Morken, Chapter 11, "Numerical Differenciation" Args: f_p: The value of the function :math:`f` at the next step :math:`x+\\delta_x`. f_x: The value of the function :math:`f` at the current step :math:`x`. f_m: The value of the function :math:`f` at the previous step :math:`x-\\delta_x`. step: The differentiation step :math:`\\delta_x`. Returns: The estimation of the truncation error. None if the Hessian approximation is too small to compute the optimal step. The estimation of the cancellation error. None if the Hessian approximation is too small to compute the optimal step. The optimal step. """ hess = approx_hess(f_p, f_x, f_m, step) if abs(hess) < 1e-10: LOGGER.debug("Hessian approximation is too small, can't compute optimal step.") return None, None, step opt_step = 2 * (epsilon_mach * abs(f_x) / abs(hess)) ** 0.5 trunc_error = compute_truncature_error(hess, step) cancel_error = compute_cancellation_error(f_x, opt_step) return trunc_error, cancel_error, opt_step
[docs]def compute_truncature_error( hess: ndarray, step: float, ) -> ndarray: r"""Estimate the truncation error. Defined for a first order finite differences scheme. Args: hess: The second-order derivative :math:`d^2f/dx^2`. step: The differentiation step. Returns: The truncation error. """ trunc_error = abs(hess) * step / 2 return trunc_error
[docs]def compute_cancellation_error( f_x: ndarray, step: float, epsilon_mach=EPSILON, ) -> ndarray: r"""Estimate the cancellation error. This is the round-off when doing :math:`f(x+\\delta_x)-f(x)`. Args: f_x: The value of the function at the current step :math:`x`. step: The step used for the calculations of the perturbed functions values. epsilon_mach: The machine epsilon. Returns: The cancellation error. """ epsa = epsilon_mach * abs(f_x) cancel_error = 2 * epsa / step return cancel_error
[docs]def approx_hess( f_p: ndarray, f_x: ndarray, f_m: ndarray, step: float, ) -> ndarray: r"""Compute the second-order approximation of the Hessian matrix :math:`d^2f/dx^2`. Args: f_p: The value of the function :math:`f` at the next step :math:`x+\\delta_x`. f_x: The value of the function :math:`f` at the current step :math:`x`. f_m: The value of the function :math:`f` at the previous step :math:`x-\\delta_x`. step: The differentiation step :math:`\\delta_x`. Returns: The approximation of the Hessian matrix at the current step :math:`x`. """ hess = (f_p - 2 * f_x + f_m) / (step**2) return hess