Source code for gemseo_calibration.measure
# Copyright 2021 IRT Saint Exupéry, https://www.irt-saintexupery.com
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU Lesser General Public
# License version 3 as published by the Free Software Foundation.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
# Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with this program; if not, write to the Free Software Foundation,
# Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
"""A module to measure the consistency or the inconsistency between two data sets."""
from __future__ import annotations
from typing import ClassVar
from gemseo.core.dataset import Dataset
from gemseo.core.mdofunctions.mdo_function import MDOFunction
from numpy import infty
from numpy import nanmax
from numpy import nanmin
from numpy import ndarray
[docs]class CalibrationMeasure(MDOFunction):
"""A measure of the consistency (or inconsistency) between two data sets."""
output_name: str
"""The name of the output used by the measure for calibration."""
maximize: ClassVar[bool] = False
"""Whether to maximize the calibration measure."""
def __init__(
self, output_name: str, name: str | None = None, f_type: str | None = None
) -> None:
# noqa: D205,D212,D415
"""
Args:
output_name: The name of the output to be taken into account by the measure.
"""
self.output_name = output_name
super().__init__(None, name or self._compute_name(), f_type=f_type)
self._lower_bound = -infty
self._upper_bound = infty
self._reference_data = []
@property
def full_output_name(self) -> str:
"""The full name of the output."""
return self.output_name
def _compute_name(self) -> str:
"""Return the name of the measure."""
return f"{self.__class__.__name__}({self.output_name})"
[docs] def set_reference_data(self, reference_dataset: Dataset) -> None:
"""Define the reference input-output data set.
Args:
reference_dataset: The reference input-output data set.
"""
self._reference_data = reference_dataset[self.output_name]
self._lower_bound = nanmin(self._reference_data)
self._upper_bound = nanmax(self._reference_data)
def _update_bounds(self, data: ndarray) -> None:
"""Update the lower and upper bounds of the output.
Args:
data: The value of the output.
"""
self._lower_bound = min(data.min(), self._lower_bound)
self._upper_bound = max(data.max(), self._upper_bound)
def __call__(self, model_dataset: Dataset) -> float:
"""Measure the (in)consistency between the model dataset and the reference one.
Args:
model_dataset: The model dataset.
Returns:
The measure of the (in)consistency between the model and reference datasets.
"""
raise NotImplementedError
@staticmethod
def _compare_data(
data: ndarray,
other_data: ndarray,
) -> ndarray:
"""Compare two data arrays.
Args:
data: The first data array.
other_data: The second data array.
Returns:
The comparison between the two data arrays.
"""
raise NotImplementedError