Source code for gemseo_calibration.post.factory
# Copyright 2021 IRT Saint Exupéry, https://www.irt-saintexupery.com
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU Lesser General Public
# License version 3 as published by the Free Software Foundation.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
# Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with this program; if not, write to the Free Software Foundation,
# Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
"""A factory to post-process a :class:`.CalibrationScenario`."""
from __future__ import annotations
import logging
from gemseo.algos.opt_problem import OptimizationProblem
from gemseo.core.dataset import Dataset
from gemseo.core.factory import Factory
from gemseo.post.post_factory import PostFactory
from gemseo_calibration.post_processor import CalibrationPostProcessor
LOGGER = logging.getLogger(__name__)
[docs]class CalibrationPostFactory(PostFactory):
"""A factory for calibration post-processing."""
def __init__(self) -> None: # noqa: D107
self.factory = Factory(CalibrationPostProcessor, ("gemseo_calibration.post",))
self.executed_post = []
[docs] def execute(
self,
opt_problem: str | OptimizationProblem,
reference_data: Dataset,
prior_model_data: Dataset,
posterior_model_data: Dataset,
post_name: str,
**options,
) -> CalibrationPostProcessor:
"""Compute the post-processing.
Args:
opt_problem: The optimization problem containing the data to post-process.
reference_data: The reference data used during the calibration stage.
prior_model_data: The model data before the calibration stage.
posterior_model_data: The model data after the calibration stage.
post_name: The name of the post-processing method.
**options: The options of the post-processing method.
Returns:
The executed post-processing of the optimization problem.
"""
if isinstance(opt_problem, str):
opt_problem = OptimizationProblem.import_hdf(opt_problem)
post = self.create(
opt_problem,
reference_data,
prior_model_data,
posterior_model_data,
post_name,
)
post.execute(**options)
self.executed_post.append(post)
return post
[docs] def create(
self,
opt_problem: OptimizationProblem,
reference_data: Dataset,
prior_model_data: Dataset,
posterior_model_data: Dataset,
post_name: str,
) -> CalibrationPostProcessor:
"""Create the post-processing.
Args:
opt_problem: The optimization problem containing the data to post-process.
reference_data: The reference data used during the calibration stage.
prior_model_data: The model data before the calibration stage.
posterior_model_data: The model data after the calibration stage.
post_name: The name of the post-processing method.
Returns:
The post-processing of the optimization problem.
"""
return self.factory.create(
post_name,
reference_data=reference_data,
prior_model_data=prior_model_data,
posterior_model_data=posterior_model_data,
opt_problem=opt_problem,
)