criterion module¶
Acquisition criterion for which the optimum would improve the regression model.
An acquisition criterion (also called infill criterion) is a function taking a model input value and returning a value of interest to maximize (default option) or minimize according to the meaning of the acquisition criterion.
Then, the input value optimizing this criterion can be used to enrich the dataset used by a machine learning algorithm in its training stage. This is the purpose of adaptive learning.
This notion of acquisition criterion is implemented through the
MLDataAcquisitionCriterion
class which is built from a
MLSupervisedAlgo
and inherits from MDOFunction
.
- class gemseo_mlearning.adaptive.criterion.MLDataAcquisitionCriterion(algo_distribution, **options)[source]¶
Bases:
gemseo.core.mdofunctions.mdo_function.MDOFunction
Acquisition criterion.
# noqa: D205 D212 D415 :param algo_distribution: The distribution of a machine learning algorithm. :param **options: The acquisition criterion options.
- Parameters
algo_distribution (gemseo_mlearning.adaptive.distribution.MLRegressorDistribution) –
**options (Any) –
- Return type
None
- check_grad(x_vect, method='FirstOrderFD', step=1e-06, error_max=1e-08)¶
Check the gradients of the function.
- Parameters
x_vect (numpy.ndarray) – The vector at which the function is checked.
method (str) –
The method used to approximate the gradients, either “FirstOrderFD” or “ComplexStep”.
By default it is set to FirstOrderFD.
step (float) –
The step for the approximation of the gradients.
By default it is set to 1e-06.
error_max (float) –
The maximum value of the error.
By default it is set to 1e-08.
- Raises
ValueError – Either if the approximation method is unknown, if the shapes of the analytical and approximated Jacobian matrices are inconsistent or if the analytical gradients are wrong.
- Return type
None
- static concatenate(functions, name, f_type=None)¶
Concatenate functions.
- Parameters
functions (Iterable[MDOFunction]) – The functions to be concatenated.
name (str) – The name of the concatenation function.
f_type (str | None) –
The type of the concatenation function. If None, the function will have no type.
By default it is set to None.
- Returns
The concatenation of the functions.
- Return type
- convex_linear_approx(x_vect, approx_indexes=None, sign_threshold=1e-09)¶
Compute a convex linearization of the function.
\(\newcommand{\xref}{\hat{x}}\newcommand{\dim}{d}\) The convex linearization of a function \(f\) at a point \(\xref\) is defined as
\[\begin{split}\newcommand{\partialder}{\frac{\partial f}{\partial x_i}(\xref)} f(x) \approx f(\xref) + \sum_{\substack{i = 1 \\ \partialder > 0}}^{\dim} \partialder \, (x_i - \xref_i) - \sum_{\substack{i = 1 \\ \partialder < 0}}^{\dim} \partialder \, \xref_i^2 \, \left(\frac{1}{x_i} - \frac{1}{\xref_i}\right).\end{split}\]\(\newcommand{\approxinds}{I}\) Optionally, one may require the convex linearization of \(f\) with respect to a subset of its variables \(x_{i \in \approxinds}\), \(I \subset \{1, \dots, \dim\}\), rather than all of them:
\[\begin{split}f(x) = f(x_{i \in \approxinds}, x_{i \not\in \approxinds}) \approx f(\xref_{i \in \approxinds}, x_{i \not\in \approxinds}) + \sum_{\substack{i \in \approxinds \\ \partialder > 0}} \partialder \, (x_i - \xref_i) - \sum_{\substack{i \in \approxinds \\ \partialder < 0}} \partialder \, \xref_i^2 \, \left(\frac{1}{x_i} - \frac{1}{\xref_i}\right).\end{split}\]- Parameters
x_vect (ndarray) – The input vector at which to build the convex linearization.
approx_indexes (ndarray | None) –
A boolean mask specifying w.r.t. which inputs the function should be approximated. If None, consider all the inputs.
By default it is set to None.
sign_threshold (float) –
The threshold for the sign of the derivatives.
By default it is set to 1e-09.
- Returns
The convex linearization of the function at the given input vector.
- Return type
- static deserialize(file_path)¶
Deserialize a function from a file.
- Parameters
file_path (str | Path) – The path to the file containing the function.
- Returns
The function instance.
- Return type
- evaluate(x_vect)¶
Evaluate the function and store the dimension of the output space.
- Parameters
x_vect (numpy.ndarray) – The value of the inputs of the function.
- Returns
The value of the output of the function.
- Return type
- static filt_0(arr, floor_value=1e-06)¶
Set the non-significant components of a vector to zero.
The component of a vector is non-significant if its absolute value is lower than a threshold.
- Parameters
arr (numpy.ndarray) – The original vector.
floor_value (float) –
The threshold.
By default it is set to 1e-06.
- Returns
The original vector whose non-significant components have been set at zero.
- Return type
- static generate_args(input_dim, args=None)¶
Generate the names of the inputs of the function.
- Parameters
input_dim (int) – The dimension of the input space of the function.
args (Sequence[str] | None) –
The initial names of the inputs of the function. If there is only one name, e.g. [“var”], use this name as a base name and generate the names of the inputs, e.g. [“var!0”, “var!1”, “var!2”] if the dimension of the input space is equal to 3. If None, use “x” as a base name and generate the names of the inputs, i.e. [“x!0”, “x!1”, “x!2”].
By default it is set to None.
- Returns
The names of the inputs of the function.
- Return type
Sequence[str]
- get_indexed_name(index)¶
Return the name of function component.
- has_args()¶
Check if the inputs of the function have names.
- Returns
Whether the inputs of the function have names.
- Return type
- has_dim()¶
Check if the dimension of the output space of the function is defined.
- Returns
Whether the dimension of the output space of the function is defined.
- Return type
- has_expr()¶
Check if the function has an expression.
- Returns
Whether the function has an expression.
- Return type
- has_f_type()¶
Check if the function has a type.
- Returns
Whether the function has a type.
- Return type
- has_jac()¶
Check if the function has an implemented Jacobian function.
- Returns
Whether the function has an implemented Jacobian function.
- Return type
- has_outvars()¶
Check if the outputs of the function have names.
- Returns
Whether the outputs of the function have names.
- Return type
- static init_from_dict_repr(**kwargs)¶
Initialize a new function.
This is typically used for deserialization.
- Parameters
**kwargs – The attributes from
MDOFunction.DICT_REPR_ATTR
.- Returns
A function initialized from the provided data.
- Raises
ValueError – If the name of an argument is not in
MDOFunction.DICT_REPR_ATTR
.- Return type
- is_constraint()¶
Check if the function is a constraint.
The type of a constraint function is either ‘eq’ or ‘ineq’.
- Returns
Whether the function is a constraint.
- Return type
- linear_approximation(x_vect, name=None, f_type=None, args=None)¶
Compute a first-order Taylor polynomial of the function.
\(\newcommand{\xref}{\hat{x}}\newcommand{\dim}{d}\) The first-order Taylor polynomial of a (possibly vector-valued) function \(f\) at a point \(\xref\) is defined as
\[\newcommand{\partialder}{\frac{\partial f}{\partial x_i}(\xref)} f(x) \approx f(\xref) + \sum_{i = 1}^{\dim} \partialder \, (x_i - \xref_i).\]- Parameters
x_vect (ndarray) – The input vector at which to build the Taylor polynomial.
name (str | None) –
The name of the linear approximation function. If None, create a name from the name of the function.
By default it is set to None.
f_type (str | None) –
The type of the linear approximation function. If None, the function will have no type.
By default it is set to None.
args (Sequence[str] | None) –
The names of the inputs of the linear approximation function, or a name base. If None, use the names of the inputs of the function.
By default it is set to None.
- Returns
The first-order Taylor polynomial of the function at the input vector.
- Raises
AttributeError – If the function does not have a Jacobian function.
- Return type
- offset(value)¶
Add an offset value to the function.
- Parameters
value (ndarray | Number) – The offset value.
- Returns
The offset function as an MDOFunction object.
- Return type
- quadratic_approx(x_vect, hessian_approx, args=None)¶
Build a quadratic approximation of the function at a given point.
The function must be scalar-valued.
\(\newcommand{\xref}{\hat{x}}\newcommand{\dim}{d}\newcommand{ \hessapprox}{\hat{H}}\) For a given approximation \(\hessapprox\) of the Hessian matrix of a function \(f\) at a point \(\xref\), the quadratic approximation of \(f\) is defined as
\[\newcommand{\partialder}{\frac{\partial f}{\partial x_i}(\xref)} f(x) \approx f(\xref) + \sum_{i = 1}^{\dim} \partialder \, (x_i - \xref_i) + \frac{1}{2} \sum_{i = 1}^{\dim} \sum_{j = 1}^{\dim} \hessapprox_{ij} (x_i - \xref_i) (x_j - \xref_j).\]- Parameters
x_vect (ndarray) – The input vector at which to build the quadratic approximation.
hessian_approx (ndarray) – The approximation of the Hessian matrix at this input vector.
args (Sequence[str] | None) –
The names of the inputs of the quadratic approximation function, or a name base. If None, use the ones of the current function.
By default it is set to None.
- Returns
The second-order Taylor polynomial of the function at the given point.
- Raises
ValueError – Either if the approximated Hessian matrix is not square, or if it is not consistent with the dimension of the given point.
AttributeError – If the function does not have an implemented Jacobian function.
- Return type
- static rel_err(a_vect, b_vect, error_max)¶
Compute the 2-norm of the difference between two vectors.
Normalize it with the 2-norm of the reference vector if the latter is greater than the maximal error.
- Parameters
a_vect (numpy.ndarray) – A first vector.
b_vect (numpy.ndarray) – A second vector, used as a reference.
error_max (float) – The maximum value of the error.
- Returns
The difference between two vectors, normalized if required.
- Return type
- restrict(frozen_indexes, frozen_values, input_dim, name=None, f_type=None, expr=None, args=None)¶
Return a restriction of the function
\(\newcommand{\frozeninds}{I}\newcommand{\xfrozen}{\hat{x}}\newcommand{ \frestr}{\hat{f}}\) For a subset \(\approxinds\) of the variables indexes of a function \(f\) to remain frozen at values \(\xfrozen_{i \in \frozeninds}\) the restriction of \(f\) is given by
\[\frestr: x_{i \not\in \approxinds} \longmapsto f(\xref_{i \in \approxinds}, x_{i \not\in \approxinds}).\]- Parameters
frozen_indexes (ndarray) – The indexes of the inputs that will be frozen
frozen_values (ndarray) – The values of the inputs that will be frozen.
input_dim (int) – The dimension of input space of the function before restriction.
name (str | None) –
The name of the function after restriction. If None, create a default name based on the name of the current function and on the argument args.
By default it is set to None.
f_type (str | None) –
The type of the function after restriction. If None, the function will have no type.
By default it is set to None.
expr (str | None) –
The expression of the function after restriction. If None, the function will have no expression.
By default it is set to None.
args (Sequence[str] | None) –
The names of the inputs of the function after restriction. If None, the inputs of the function will have no names.
By default it is set to None.
- Returns
The restriction of the function.
- Return type
- serialize(file_path)¶
Serialize the function and store it in a file.
- Parameters
file_path (str | Path) – The path to the file to store the function.
- Return type
None
- set_pt_from_database(database, design_space, normalize=False, jac=True, x_tolerance=1e-10)¶
Set the original function and Jacobian function from a database.
For a given input vector, the method
MDOFunction.func()
will return either the output vector stored in the database if the input vector is present or None. The same for the methodMDOFunction.jac()
.- Parameters
database (gemseo.algos.database.Database) – The database to read.
design_space (gemseo.algos.design_space.DesignSpace) – The design space used for normalization.
normalize (bool) –
If True, the values of the inputs are unnormalized before call.
By default it is set to False.
jac (bool) –
If True, a Jacobian pointer is also generated.
By default it is set to True.
x_tolerance (float) –
The tolerance on the distance between inputs.
By default it is set to 1e-10.
- Return type
None
- to_dict()¶
Create a dictionary representation of the function.
This is used for serialization. The pointers to the functions are removed.
- COEFF_FORMAT_ND: str = '{: .2e}'¶
The format to be applied to a number when represented in a matrix.
- DICT_REPR_ATTR: list[str] = ['name', 'f_type', 'expr', 'args', 'dim', 'special_repr']¶
The names of the attributes to be serialized.
- algo_distribution: MLRegressorDistribution¶
The distribution of a machine learning algorithm assessor.
- property dim: int¶
The dimension of the output space of the function.
- Raises
TypeError – If the dimension of the output space is not an integer.
- property expr: str¶
The expression of the function, e.g. “2*x”.
- Raises
TypeError – If the expression is not a string.
- property f_type: str¶
The type of the function, among
MDOFunction.AVAILABLE_TYPES
.- Raises
ValueError – If the type of function is not available.
- property func: Callable[[numpy.ndarray], numpy.ndarray]¶
The function to be evaluated from a given input vector.
- property jac: Callable[[numpy.ndarray], numpy.ndarray]¶
The Jacobian function to be evaluated from a given input vector.
- Raises
TypeError – If the Jacobian function is not callable.
- last_eval: ndarray | None¶
The value of the function output at the last evaluation.
None
if it has not yet been evaluated.
- property n_calls: int¶
The number of times the function has been evaluated.
This count is both multiprocess- and multithread-safe, thanks to the locking process used by
MDOFunction.evaluate()
.
- class gemseo_mlearning.adaptive.criterion.MLDataAcquisitionCriterionFactory[source]¶
Bases:
object
A factory of
MLDataAcquisitionCriterion
.- Return type
None
- create(criterion, algo_distribution, **options)[source]¶
Create a
MLDataAcquisitionCriterion
.- Parameters
criterion (str) – A name of data acquisition criterion. (its class name).
algo_distribution (gemseo_mlearning.adaptive.distribution.MLRegressorDistribution) – The distribution of a machine learning algorithm.
**options (Any) – The acquisition criterion options.
- Returns
An acquisition criterion.
- Return type
gemseo_mlearning.adaptive.criterion.MLDataAcquisitionCriterion