thin_plate_spline module¶
Thin plate spline regression.
- class gemseo_mlearning.regression.thin_plate_spline.TPSRegressor(data, transformer=None, input_names=None, output_names=None, smooth=0.0, norm='euclidean', **parameters)[source]¶
Bases:
gemseo.mlearning.regression.rbf.RBFRegressor
Thin plate spline (TPS) regression.
- Parameters
data (Dataset) – The learning dataset.
transformer (Mapping[str, TransformerType] | None) –
The strategies to transform the variables. The values are instances of
Transformer
while the keys are the names of either the variables or the groups of variables, e.g. “inputs” or “outputs” in the case of the regression algorithms. If a group is specified, theTransformer
will be applied to all the variables of this group. If None, do not transform the variables.By default it is set to None.
input_names (Iterable[str]) –
The names of the input variables. If
None
, consider all the input variables of the learning dataset.By default it is set to None.
output_names (Iterable[str]) –
The names of the output variables. If
None
, consider all the output variables of the learning dataset.By default it is set to None.
function –
The radial basis function taking a radius
r
as input, representing a distance between two points. If it is a string, then it must be one of the following:'multiquadric': sqrt((r/self.epsilon)**2 + 1) 'inverse': 1.0/sqrt((r/self.epsilon)**2 + 1) 'gaussian': exp(-(r/self.epsilon)**2) 'linear': r 'cubic': r**3 'quintic': r**5 'thin_plate': r**2 * log(r)
If it is a callable, then it must take two arguments
(self, r)
, e.g.lambda self, r: return sqrt((r/self.epsilon)**2 + 1)
for the multiquadric function. The epsilon parameter will be available asself.epsilon
. Other keyword arguments passed in will be available as well.der_function – The derivative of the radial basis function, only to be provided if
function
is a callable and if the use of the model with its derivative is required. IfNone
and iffunction
is a callable, an error will be raised. IfNone
and iffunction
is a string, the class will look for its internal implementation and will raise an error if it is missing. Theder_function
shall take three arguments (input_data
,norm_input_data
,eps
). For an RBF of the form function(\(r\)), der_function(\(x\), \(|x|\), \(\epsilon\)) shall return \(\epsilon^{-1} x/|x| f'(|x|/\epsilon)\).epsilon – An adjustable constant for Gaussian or multiquadric functions. If
None
, use the average distance between input data.smooth (float) –
The degree of smoothness,
0
involving an interpolation of the learning points.By default it is set to 0.0.
norm (str | Callable[[ndarray, ndarray], float]) –
The distance metric to be used, either a distance function name known by SciPy or a function that computes the distance between two points.
By default it is set to euclidean.
**parameters (Any) –
- Raises
ValueError – When both the variable and the group it belongs to have a transformer.
- Return type
None
- class DataFormatters¶
Bases:
gemseo.mlearning.core.supervised.MLSupervisedAlgo.DataFormatters
Machine learning regression model decorators.
- classmethod format_dict(predict)¶
Make an array-based function be called with a dictionary of NumPy arrays.
- Parameters
predict (Callable[[numpy.ndarray], numpy.ndarray]) – The function to be called; it takes a NumPy array in input and returns a NumPy array.
- Returns
A function making the function ‘predict’ work with either a NumPy data array or a dictionary of NumPy data arrays indexed by variables names. The evaluation will have the same type as the input data.
- Return type
Callable[[Union[numpy.ndarray, Mapping[str, numpy.ndarray]]], Union[numpy.ndarray, Mapping[str, numpy.ndarray]]]
- classmethod format_dict_jacobian(predict_jac)¶
Wrap an array-based function to make it callable with a dictionary of NumPy arrays.
- Parameters
predict_jac (Callable[[numpy.ndarray], numpy.ndarray]) – The function to be called; it takes a NumPy array in input and returns a NumPy array.
- Returns
The wrapped ‘predict_jac’ function, callable with either a NumPy data array or a dictionary of numpy data arrays indexed by variables names. The return value will have the same type as the input data.
- Return type
Callable[[Union[numpy.ndarray, Mapping[str, numpy.ndarray]]], Union[numpy.ndarray, Mapping[str, numpy.ndarray]]]
- classmethod format_input_output(predict)¶
Make a function robust to type, array shape and data transformation.
- Parameters
predict (Callable[[numpy.ndarray], numpy.ndarray]) – The function of interest to be called.
- Returns
A function calling the function of interest ‘predict’, while guaranteeing consistency in terms of data type and array shape, and applying input and/or output data transformation if required.
- Return type
Callable[[Union[numpy.ndarray, Mapping[str, numpy.ndarray]]], Union[numpy.ndarray, Mapping[str, numpy.ndarray]]]
- classmethod format_samples(predict)¶
Make a 2D NumPy array-based function work with 1D NumPy array.
- Parameters
predict (Callable[[numpy.ndarray], numpy.ndarray]) – The function to be called; it takes a 2D NumPy array in input and returns a 2D NumPy array. The first dimension represents the samples while the second one represents the components of the variables.
- Returns
A function making the function ‘predict’ work with either a 1D NumPy array or a 2D NumPy array. The evaluation will have the same dimension as the input data.
- Return type
Callable[[numpy.ndarray], numpy.ndarray]
- classmethod format_transform(transform_inputs=True, transform_outputs=True)¶
Force a function to transform its input and/or output variables.
- Parameters
- Returns
A function evaluating a function of interest, after transforming its input data and/or before transforming its output data.
- Return type
Callable[[numpy.ndarray], numpy.ndarray]
- classmethod transform_jacobian(predict_jac)¶
Apply transformation to inputs and inverse transformation to outputs.
- Parameters
predict_jac (Callable[[numpy.ndarray], numpy.ndarray]) – The function of interest to be called.
- Returns
A function evaluating the function ‘predict_jac’, after transforming its input data and/or before transforming its output data.
- Return type
Callable[[numpy.ndarray], numpy.ndarray]
- class RBFDerivatives¶
Bases:
object
Derivatives of functions used in
RBFRegressor
.For an RBF of the form \(f(r)\), \(r\) scalar, the derivative functions are defined by \(d(f(r))/dx\), with \(r=|x|/\epsilon\). The functions are thus defined by \(df/dx = \epsilon^{-1} x/|x| f'(|x|/\epsilon)\). This convention is chosen to avoid division by \(|x|\) when the terms may be cancelled out, as \(f'(r)\) often has a term in \(r\).
- classmethod der_cubic(input_data, norm_input_data, eps)¶
Compute derivative w.r.t. \(x\) of the function \(f(r) = r^3\).
- Parameters
input_data (numpy.ndarray) – The 1D input data.
norm_input_data (float) – The norm of the input variable.
eps (float) – The correlation length.
- Returns
The derivative of the function.
- Return type
- classmethod der_gaussian(input_data, norm_input_data, eps)¶
Compute derivative w.r.t. \(x\) of the function \(f(r) = \exp(-r^2)\).
- Parameters
input_data (numpy.ndarray) – The 1D input data.
norm_input_data (float) – The norm of the input variable.
eps (float) – The correlation length.
- Returns
The derivative of the function.
- Return type
- classmethod der_inverse_multiquadric(input_data, norm_input_data, eps)¶
Compute derivative w.r.t. \(x\) of the function \(f(r) = 1/\sqrt{r^2 + 1}\).
- Parameters
input_data (numpy.ndarray) – The 1D input data.
norm_input_data (float) – The norm of the input variable.
eps (float) – The correlation length.
- Returns
The derivative of the function.
- Return type
- classmethod der_linear(input_data, norm_input_data, eps)¶
Compute derivative w.r.t. \(x\) of the function \(f(r) = r\). If \(x=0\), return 0 (determined up to a tolerance).
- Parameters
input_data (numpy.ndarray) – The 1D input data.
norm_input_data (float) – The norm of the input variable.
eps (float) – The correlation length.
- Returns
The derivative of the function.
- Return type
- classmethod der_multiquadric(input_data, norm_input_data, eps)¶
Compute derivative of \(f(r) = \sqrt{r^2 + 1}\) wrt \(x\).
- Parameters
input_data (numpy.ndarray) – The 1D input data.
norm_input_data (float) – The norm of the input variable.
eps (float) – The correlation length.
- Returns
The derivative of the function.
- Return type
- classmethod der_quintic(input_data, norm_input_data, eps)¶
Compute derivative w.r.t. \(x\) of the function \(f(r) = r^5\).
- Parameters
input_data (numpy.ndarray) – The 1D input data.
norm_input_data (float) – The norm of the input variable.
eps (float) – The correlation length.
- Returns
The derivative of the function.
- Return type
- classmethod der_thin_plate(input_data, norm_input_data, eps)¶
Compute derivative w.r.t. \(x\) of the function \(f(r) = r^2 \log(r)\). If \(x=0\), return 0 (determined up to a tolerance).
- Parameters
input_data (numpy.ndarray) – The 1D input data.
norm_input_data (float) – The norm of the input variable.
eps (float) – The correlation length.
- Returns
The derivative of the function.
- Return type
- TOL = 2.220446049250313e-16¶
- learn(samples=None, fit_transformers=True)¶
Train the machine learning algorithm from the learning dataset.
- load_algo(directory)¶
Load a machine learning algorithm from a directory.
- Parameters
directory (str | Path) – The path to the directory where the machine learning algorithm is saved.
- Return type
None
- predict(input_data, *args, **kwargs)¶
Evaluate ‘predict’ with either array or dictionary-based input data.
Firstly, the pre-processing stage converts the input data to a NumPy data array, if these data are expressed as a dictionary of NumPy data arrays.
Then, the processing evaluates the function ‘predict’ from this NumPy input data array.
Lastly, the post-processing transforms the output data to a dictionary of output NumPy data array if the input data were passed as a dictionary of NumPy data arrays.
- Parameters
input_data (Union[numpy.ndarray, Mapping[str, numpy.ndarray]]) – The input data.
*args – The positional arguments of the function ‘predict’.
**kwargs – The keyword arguments of the function ‘predict’.
- Returns
The output data with the same type as the input one.
- Return type
Union[numpy.ndarray, Mapping[str, numpy.ndarray]]
- predict_jacobian(input_data, *args, **kwargs)¶
Evaluate ‘predict_jac’ with either array or dictionary-based data.
Firstly, the pre-processing stage converts the input data to a NumPy data array, if these data are expressed as a dictionary of NumPy data arrays.
Then, the processing evaluates the function ‘predict_jac’ from this NumPy input data array.
Lastly, the post-processing transforms the output data to a dictionary of output NumPy data array if the input data were passed as a dictionary of NumPy data arrays.
- Parameters
input_data – The input data.
*args – The positional arguments of the function ‘predict_jac’.
**kwargs – The keyword arguments of the function ‘predict_jac’.
- Returns
The output data with the same type as the input one.
- predict_raw(input_data)¶
Predict output data from input data.
- Parameters
input_data (numpy.ndarray) – The input data with shape (n_samples, n_inputs).
- Returns
The predicted output data with shape (n_samples, n_outputs).
- Return type
- save(directory=None, path='.', save_learning_set=False)¶
Save the machine learning algorithm.
- Parameters
directory (str | None) –
The name of the directory to save the algorithm.
By default it is set to None.
path (str | Path) –
The path to parent directory where to create the directory.
By default it is set to ..
save_learning_set (bool) –
Whether to save the learning set or get rid of it to lighten the saved files.
By default it is set to False.
- Returns
The path to the directory where the algorithm is saved.
- Return type
- AVAILABLE_FUNCTIONS: list[str] = ['multiquadric', 'inverse_multiquadric', 'gaussian', 'linear', 'cubic', 'quintic', 'thin_plate']¶
- DEFAULT_TRANSFORMER: Final[dict[str, Transformer]] = {'inputs': <gemseo.mlearning.transform.scaler.min_max_scaler.MinMaxScaler object>, 'outputs': <gemseo.mlearning.transform.scaler.min_max_scaler.MinMaxScaler object>}¶
- SHORT_ALGO_NAME: ClassVar[str] = 'TPS'¶
The short name of the machine learning algorithm, often an acronym.
Typically used for composite names, e.g.
f"{algo.SHORT_ALGO_NAME}_{dataset.name}"
orf"{algo.SHORT_ALGO_NAME}_{discipline.name}"
.
- algo: Any¶
The interfaced machine learning algorithm.
- der_function: Callable[[ndarray], ndarray]¶
The derivative of the radial basis function.
- property function: str¶
The name of the kernel function.
The name is possibly different from self.parameters[‘function’], as it is mapped (scipy). Examples:
‘inverse’ -> ‘inverse_multiquadric’ ‘InverSE MULtiQuadRIC’ -> ‘inverse_multiquadric’
- property input_data: numpy.ndarray¶
The input data matrix.
- property learning_samples_indices: Sequence[int]¶
The indices of the learning samples used for the training.
- property output_data: numpy.ndarray¶
The output data matrix.
- transformer: dict[str, Transformer]¶
The strategies to transform the variables. The values are instances of
Transformer
while the keys are the names of either the variables or the groups of variables, e.g. “inputs” or “outputs” in the case of the regression algorithms. If a group is specified, theTransformer
will be applied to all the variables of this group. If None, do not transform the variables.
- y_average: ndarray¶
The mean of the learning output data.