Source code for gemseo_mlearning.adaptive.acquisition

# Copyright 2021 IRT Saint Exupéry, https://www.irt-saintexupery.com
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU Lesser General Public
# License version 3 as published by the Free Software Foundation.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
# Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with this program; if not, write to the Free Software Foundation,
# Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
#
# Contributors:
#    INITIAL AUTHORS - API and implementation and/or documentation
#        :author: Matthias De Lozzo
#    OTHER AUTHORS   - MACROSCOPIC CHANGES
"""Acquisition of learning data from a machine learning algorithm and a criterion."""
from __future__ import annotations

import logging
from typing import Any
from typing import ClassVar

from gemseo.algos.database import Database
from gemseo.algos.design_space import DesignSpace
from gemseo.algos.doe.doe_factory import DOEFactory
from gemseo.algos.opt.opt_factory import OptimizersFactory
from gemseo.algos.opt_problem import OptimizationProblem
from gemseo.core.discipline import MDODiscipline
from gemseo.mlearning.core.ml_algo import DataType
from numpy import array

from gemseo_mlearning.adaptive.criterion import MLDataAcquisitionCriterionFactory
from gemseo_mlearning.adaptive.distribution import MLRegressorDistribution

LOGGER = logging.getLogger(__name__)

_CRITERION_FACTORY = MLDataAcquisitionCriterionFactory()


[docs]class MLDataAcquisition: """Data acquisition for adaptive learning.""" default_algo_name: ClassVar[str] = "NLOPT_COBYLA" """The name of the default algorithm to find the point(s). Typically a DoE or an optimizer. """ default_opt_options: ClassVar[dict[str, Any]] = {"max_iter": 100} """The names and values of the default optimization options.""" default_doe_options: ClassVar[dict[str, Any]] = {"n_samples": 100} """The names and values of the default DoE options.""" def __init__( self, criterion: str, input_space: DesignSpace, distribution: MLRegressorDistribution, **options: Any, ) -> None: """# noqa: D205 D212 D415 Args: criterion: The name of a data acquisition criterion selecting new point(s) to reach a particular goal (name of a class inheriting from :class:`.MLDataAcquisitionCriterion`). input_space: The input space on which to look for the new learning point. distribution: The distribution of the machine learning algorithm. **options: The options of the acquisition criterion. Raises: NotImplementedError: When the output dimension is greater than 1. """ if distribution.output_dimension > 1: raise NotImplementedError( "MLDataAcquisition works only with scalar output." ) self.__algo_name = self.default_algo_name self.__algo_options = self.default_opt_options self.__algo = OptimizersFactory().create(self.__algo_name) self.__criterion = criterion self.__input_space = input_space self.__criterion_options = options.copy() self.__distribution = distribution self.__database = Database() self.__problem = self.__build_optimization_problem() def __build_optimization_problem(self) -> OptimizationProblem: """Create the optimization problem. The data acquisition criterion is the objective (either a cost or a performance) while the input space is the design space. Approximate the Jacobian with finite differences if missing. Returns: The optimization problem. """ problem = OptimizationProblem(self.__input_space) problem.objective = _CRITERION_FACTORY.create( self.__criterion, self.__distribution, **self.__criterion_options ) problem.objective.name = self.__criterion if not problem.objective.has_jac(): problem.differentiation_method = OptimizationProblem.FINITE_DIFFERENCES if problem.objective.MAXIMIZE: problem.change_objective_sign() return problem
[docs] def set_acquisition_algorithm(self, algo_name: str, **options: Any) -> None: """Set sampling or optimization algorithm. Args: algo_name: The name of the algorithm to find the learning point(s). Typically a DoE or an optimizer. **options: The values of some algorithm options; use the default values for the other ones. """ self.__algo_name = algo_name factory = DOEFactory() if factory.is_available(algo_name): self.__algo_options = self.default_doe_options.copy() else: factory = OptimizersFactory() self.__algo_options = self.default_opt_options.copy() self.__algo_options.update(options) self.__algo = factory.create(algo_name)
[docs] def compute_next_input_data( self, as_dict: bool = False, ) -> DataType: """Find the next learning point. Args: as_dict: Whether to return the input data split by input names. Otherwise, return a unique array. Returns: The next learning point. """ input_data = self.__algo.execute(self.__problem, **self.__algo_options).x_opt if as_dict: return self.__problem.design_space.array_to_dict(input_data) return input_data
[docs] def update_algo( self, discipline: MDODiscipline, n_samples: int = 1 ) -> tuple[Database, OptimizationProblem]: """Update the machine learning algorithm by learning new samples. This method acquires new learning input-output samples and trains the machine learning algorithm with the resulting enriched learning set. Args: discipline: The discipline computing the reference output data from the input data provided by the acquisition process. n_samples: The number of samples to update the machine learning algorithm. Returns: The concatenation of the optimization histories related to the different points and the last optimization problem. """ for index in range(n_samples): root_logger = logging.getLogger() saved_level = root_logger.level root_logger.setLevel(logging.WARNING) LOGGER.setLevel(logging.WARNING) input_data = self.compute_next_input_data(as_dict=True) for inputs, outputs in self.__problem.database.items(): self.__database[array([index + 1] + inputs.unwrap().tolist())] = outputs discipline.execute(input_data) learning_cache = self.__distribution.algo.learning_set.export_to_cache() learning_cache[input_data] = ( {k: discipline.local_data[k] for k in self.__distribution.output_names}, None, ) self.__distribution.change_learning_set(learning_cache.export_to_dataset()) self.__problem = self.__build_optimization_problem() LOGGER.setLevel(saved_level) LOGGER.info("Add sample %s out of %s", index + 1, n_samples) return self.__database, self.__problem