Source code for gemseo_mlearning.adaptive.criteria.mean_std.criterion

# Copyright 2021 IRT Saint Exupéry, https://www.irt-saintexupery.com
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU Lesser General Public
# License version 3 as published by the Free Software Foundation.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
# Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with this program; if not, write to the Free Software Foundation,
# Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
#
# Contributors:
#    INITIAL AUTHORS - API and implementation and/or documentation
#        :author: Matthias De Lozzo
#    OTHER AUTHORS   - MACROSCOPIC CHANGES
r"""Combination of the expectation and standard deviation of the regression model.

Statistics:

.. math::

   E_sigma[x] = E[x] + \kappa \times sigma[x]

Estimator:

.. math::

   \widehat{E_sigma}[x] = \widehat{E}[x] + \kappa \times \widehat{sigma}[x]

"""
from __future__ import annotations

from numpy import ndarray

from gemseo_mlearning.adaptive.criterion import MLDataAcquisitionCriterion
from gemseo_mlearning.adaptive.distribution import MLRegressorDistribution


[docs]class MeanSigma(MLDataAcquisitionCriterion): """Combination of the expectation and standard deviation of the regression model. This criterion is scaled by the output range. """ kappa: float """The factor associated with the standard deviation to increase the mean value.""" def __init__( self, algo_distribution: MLRegressorDistribution, kappa: float ) -> None: """# noqa: D205 D212 D415 Args: kappa: A factor associated with the standard deviation to increase or decrease the mean value. """ self.kappa = kappa super().__init__(algo_distribution) def _get_func(self): def func(input_data: ndarray) -> float: """Evaluation function. Args: input_data: The model input data. Returns: The acquisition criterion value. """ mean = self.algo_distribution.compute_mean(input_data) sigma = self.algo_distribution.compute_standard_deviation(input_data) return (mean + self.kappa * sigma) / self.output_range return func