Source code for gemseo_mlearning.adaptive.criteria.optimum.criterion_min
# Copyright 2021 IRT Saint Exupéry, https://www.irt-saintexupery.com
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU Lesser General Public
# License version 3 as published by the Free Software Foundation.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
# Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with this program; if not, write to the Free Software Foundation,
# Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
# Contributors:
# INITIAL AUTHORS - API and implementation and/or documentation
# :author: Matthias De Lozzo
# OTHER AUTHORS - MACROSCOPIC CHANGES
r"""Expected improvement for the minimum.
Statistics:
.. math::
EI[x] = E[\max(y_{min}-Y(x),0)]
where :math:`y_{min}=\min_{1\leq i \leq n}~y^{(i)}`.
Bootstrap estimator:
.. math::
\widehat{EI}[x] = \frac{1}{B}\sum_{b=1}^B \max(f_{min}-Y_b(x),0)
"""
from __future__ import annotations
from numpy import ndarray
from gemseo_mlearning.adaptive.criterion import MLDataAcquisitionCriterion
[docs]class MinExpectedImprovement(MLDataAcquisitionCriterion):
"""Expected Improvement of the regression model for the minimum.
This criterion is scaled by the output range.
"""
def _get_func(self):
def func(input_data: ndarray) -> float:
"""Evaluation function.
Args:
input_data: The model input data.
Returns:
The acquisition criterion value.
"""
dataset = self.algo_distribution.learning_set
minimum_output = min(dataset.get_data_by_group(dataset.OUTPUT_GROUP))
expected_improvement = self.algo_distribution.compute_expected_improvement(
input_data, minimum_output
)
return expected_improvement / self.output_range
return func