Source code for gemseo_mlearning.adaptive.criteria.variance.criterion
# Copyright 2021 IRT Saint Exupéry, https://www.irt-saintexupery.com
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU Lesser General Public
# License version 3 as published by the Free Software Foundation.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
# Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with this program; if not, write to the Free Software Foundation,
# Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
#
# Contributors:
# INITIAL AUTHORS - API and implementation and/or documentation
# :author: Matthias De Lozzo
# OTHER AUTHORS - MACROSCOPIC CHANGES
r"""Variance of the regression model.
Statistics:
.. math::
V[x] = E[(Y(x)-E[Y(x)])^2]
Bootstrap estimator:
.. math::
\widehat{V}[x] = \frac{1}{B-1}\sum_{b=1}^B (Y_b(x)-\widehat{E}[x])^2
where :math:`\widehat{E}[x]= \frac{1}{B}\sum_{b=1}^B Y_b(x)`.
"""
from __future__ import annotations
from numpy import ndarray
from gemseo_mlearning.adaptive.criterion import MLDataAcquisitionCriterion
[docs]class Variance(MLDataAcquisitionCriterion):
"""Variance of the regression model.
This criterion is scaled by the output range.
"""
def _get_func(self):
def func(input_data: ndarray) -> float:
"""Evaluation function.
Args:
input_data: The model input data.
Returns:
The acquisition criterion value.
"""
variance = self.algo_distribution.compute_variance(input_data)
return variance / self.output_range**2
return func