post_optimal_analysis module¶
Post-optimal analysis.
- class gemseo.algos.post_optimal_analysis.PostOptimalAnalysis(opt_problem, ineq_tol=None)[source]¶
Bases:
object
Post-optimal analysis of a parameterized optimization problem.
Consider the parameterized optimization problem below, whose objective and constraint functions depend on both the optimization variable \(x\) and a parameter \(p\).
\[\begin{split}\begin{aligned} & \text{Minimize} & & f(x,p) \\ & \text{relative to} & & x \\ & \text{subject to} & & \left\{\begin{aligned} & g(x,p)\le0, \\ & h(x,p)=0, \\ & \ell\le x\le u. \end{aligned}\right. \end{aligned}\end{split}\]Denote \(x^\ast(p)\) a solution of the problem, which depends on \(p\). The post-optimal analysis consists in computing the following total derivative:
\[\newcommand{\total}{\mathrm{d}} \frac{\total f(x^\ast(p),p)}{\total p}(p) =\frac{\partial f}{\partial p}(x^\ast(p),p) +\lambda_g^\top\frac{\partial g}{\partial p}(x^\ast(p),p) +\lambda_h^\top\frac{\partial h}{\partial p}(x^\ast(p),p),\]where \(\lambda_g\) and \(\lambda_h\) are the Lagrange multipliers of \(x^\ast(p)\). N.B. the equality above relies on the assumption that
\[\newcommand{\total}{\mathrm{d}} \lambda_g^\top\frac{\total g(x^\ast(p),p)}{\total p}(p)=0 \text{ and } \lambda_h^\top\frac{\total h(x^\ast(p),p)}{\total p}(p)=0.\]- Parameters
opt_problem (gemseo.algos.opt_problem.OptimizationProblem) – The solved optimization problem to be analyzed.
ineq_tol (Optional[bool]) –
The tolerance to determine active inequality constraints. If
None
, its value is fetched in the optimization problem.By default it is set to None.
- Return type
None
- check_validity(total_jac, partial_jac, parameters, threshold)[source]¶
Check whether the assumption for post-optimal validity holds.
- Parameters
total_jac (dict[str, dict[str, numpy.ndarray]]) – The total derivatives of the post-optimal constraints.
partial_jac (dict[str, dict[str, numpy.ndarray]]) – The partial derivatives of the constraints.
parameters (list[str]) – The names of the optimization problem parameters.
threshold (float) – The tolerance on the validity assumption.
- compute_lagrangian_jac(functions_jac, inputs)[source]¶
Compute the Jacobian of the Lagrangian.
- Parameters
- Returns
The Jacobian of the Lagrangian.
- Return type
dict[str, dict[str, numpy.ndarray]]
- execute(outputs, inputs, functions_jac)[source]¶
Perform the post-optimal analysis.
- Parameters
- Returns
The Jacobian of the Lagrangian.
- Return type
dict[str, dict[str, numpy.ndarray]]
- MULT_DOT_CONSTR_JAC = 'mult_dot_constr_jac'¶