Note
Click here to download the full example code
Solve a 2D MBB topology optimization problem¶
import matplotlib.pyplot as plt
from gemseo.api import configure_logger
from gemseo.api import create_scenario
from gemseo.problems.topo_opt.topopt_initialize import (
initialize_design_space_and_discipline_to,
)
from matplotlib import colors
configure_logger()
Out:
<RootLogger root (INFO)>
Setup the topology optimization problem¶
Define the target volume fraction:
volume_fraction = 0.3
Define the problem type:
problem_name = "MBB"
Define the number of elements in x- and y- directions:
n_x = 50
n_y = 25
Define the full material Young’s modulus and the Poisson’s ratio:
e0 = 1
nu = 0.3
Define the penalty of the SIMP approach:
penalty = 3
Define the minimum member size in the solution:
min_member_size = 1.5
Instantiate the DesignSpace
and the disciplines:
design_space, disciplines = initialize_design_space_and_discipline_to(
problem=problem_name,
n_x=n_x,
n_y=n_y,
e0=e0,
nu=nu,
penalty=penalty,
min_member_size=min_member_size,
vf0=volume_fraction,
)
Solve the topology optimization problem¶
Generate a MDOScenario
scenario = create_scenario(
disciplines,
formulation="DisciplinaryOpt",
objective_name="compliance",
design_space=design_space,
)
Add the volume fraction constraint to the scenario:
scenario.add_constraint("volume fraction", "ineq", value=volume_fraction)
Generate the XDSM
scenario.xdsmize()
Out:
INFO - 10:03:24: Generating HTML XDSM file in : xdsm.html
Execute the scenario
scenario.execute(input_data={"max_iter": 200, "algo": "NLOPT_MMA"})
Out:
INFO - 10:03:24:
INFO - 10:03:24: *** Start MDOScenario execution ***
INFO - 10:03:24: MDOScenario
INFO - 10:03:24: Disciplines: DensityFilter MaterialModelInterpolation FininiteElementAnalysis VolumeFraction
INFO - 10:03:24: MDO formulation: DisciplinaryOpt
INFO - 10:03:24: Optimization problem:
INFO - 10:03:24: minimize compliance(x)
INFO - 10:03:24: with respect to x
INFO - 10:03:24: subject to constraints:
INFO - 10:03:24: volume fraction(x) <= 0.3
INFO - 10:03:24: Solving optimization problem with algorithm NLOPT_MMA:
INFO - 10:03:24: ... 0%| | 0/200 [00:00<?, ?it]
INFO - 10:03:24: ... 1%| | 2/200 [00:00<00:00, 1010.68 it/sec]
INFO - 10:03:25: ... 2%|▏ | 4/200 [00:00<00:00, 512.81 it/sec]
INFO - 10:03:25: ... 3%|▎ | 6/200 [00:00<00:00, 347.83 it/sec]
INFO - 10:03:25: ... 4%|▍ | 8/200 [00:00<00:00, 263.65 it/sec]
INFO - 10:03:25: ... 5%|▌ | 10/200 [00:00<00:00, 212.90 it/sec]
INFO - 10:03:25: ... 6%|▌ | 12/200 [00:01<00:01, 178.35 it/sec]
INFO - 10:03:26: ... 7%|▋ | 14/200 [00:01<00:01, 153.55 it/sec]
INFO - 10:03:26: ... 8%|▊ | 16/200 [00:01<00:01, 135.15 it/sec]
INFO - 10:03:26: ... 9%|▉ | 18/200 [00:01<00:01, 120.69 it/sec]
INFO - 10:03:26: ... 10%|█ | 20/200 [00:01<00:01, 109.11 it/sec]
INFO - 10:03:26: ... 11%|█ | 22/200 [00:02<00:01, 99.33 it/sec]
INFO - 10:03:26: ... 12%|█▏ | 24/200 [00:02<00:01, 91.24 it/sec]
INFO - 10:03:27: ... 13%|█▎ | 26/200 [00:02<00:02, 84.40 it/sec]
INFO - 10:03:27: ... 14%|█▍ | 28/200 [00:02<00:02, 78.44 it/sec]
INFO - 10:03:27: ... 15%|█▌ | 30/200 [00:02<00:02, 73.46 it/sec]
INFO - 10:03:27: ... 16%|█▌ | 32/200 [00:02<00:02, 69.09 it/sec]
INFO - 10:03:27: ... 17%|█▋ | 34/200 [00:03<00:02, 65.21 it/sec]
INFO - 10:03:28: ... 18%|█▊ | 36/200 [00:03<00:02, 61.78 it/sec]
INFO - 10:03:28: ... 19%|█▉ | 38/200 [00:03<00:02, 58.63 it/sec]
INFO - 10:03:28: ... 20%|██ | 40/200 [00:03<00:02, 55.83 it/sec]
INFO - 10:03:28: ... 21%|██ | 42/200 [00:03<00:02, 53.23 it/sec]
INFO - 10:03:28: ... 22%|██▏ | 44/200 [00:03<00:03, 50.90 it/sec]
INFO - 10:03:28: ... 23%|██▎ | 46/200 [00:04<00:03, 48.77 it/sec]
INFO - 10:03:29: ... 24%|██▍ | 48/200 [00:04<00:03, 46.84 it/sec]
INFO - 10:03:29: ... 25%|██▌ | 50/200 [00:04<00:03, 44.53 it/sec]
INFO - 10:03:29: ... 26%|██▌ | 52/200 [00:04<00:03, 42.86 it/sec]
INFO - 10:03:29: ... 27%|██▋ | 54/200 [00:04<00:03, 41.34 it/sec]
INFO - 10:03:29: ... 28%|██▊ | 56/200 [00:05<00:03, 39.93 it/sec]
INFO - 10:03:29: ... 29%|██▉ | 58/200 [00:05<00:03, 38.62 it/sec]
INFO - 10:03:30: ... 30%|███ | 60/200 [00:05<00:03, 37.38 it/sec]
INFO - 10:03:30: ... 31%|███ | 62/200 [00:05<00:03, 36.26 it/sec]
INFO - 10:03:30: ... 32%|███▏ | 64/200 [00:05<00:03, 35.18 it/sec]
INFO - 10:03:30: ... 33%|███▎ | 66/200 [00:05<00:03, 34.15 it/sec]
INFO - 10:03:30: ... 34%|███▍ | 68/200 [00:06<00:03, 33.20 it/sec]
INFO - 10:03:30: ... 35%|███▌ | 70/200 [00:06<00:04, 32.29 it/sec]
INFO - 10:03:31: ... 36%|███▌ | 72/200 [00:06<00:04, 31.43 it/sec]
INFO - 10:03:31: ... 37%|███▋ | 74/200 [00:06<00:04, 30.62 it/sec]
INFO - 10:03:31: ... 38%|███▊ | 76/200 [00:06<00:04, 29.84 it/sec]
INFO - 10:03:31: ... 39%|███▉ | 78/200 [00:06<00:04, 29.10 it/sec]
INFO - 10:03:31: ... 40%|████ | 80/200 [00:07<00:04, 28.41 it/sec]
INFO - 10:03:31: ... 41%|████ | 82/200 [00:07<00:04, 27.75 it/sec]
INFO - 10:03:32: ... 42%|████▏ | 84/200 [00:07<00:04, 27.11 it/sec]
INFO - 10:03:32: ... 43%|████▎ | 86/200 [00:07<00:04, 26.50 it/sec]
INFO - 10:03:32: ... 44%|████▍ | 88/200 [00:07<00:04, 25.92 it/sec]
INFO - 10:03:32: ... 45%|████▌ | 90/200 [00:07<00:04, 25.36 it/sec]
INFO - 10:03:32: ... 46%|████▌ | 92/200 [00:08<00:04, 24.82 it/sec]
INFO - 10:03:33: ... 47%|████▋ | 94/200 [00:08<00:04, 24.30 it/sec]
INFO - 10:03:33: ... 48%|████▊ | 96/200 [00:08<00:04, 23.81 it/sec]
INFO - 10:03:33: ... 49%|████▉ | 98/200 [00:08<00:04, 23.34 it/sec]
INFO - 10:03:33: ... 50%|█████ | 100/200 [00:08<00:04, 22.89 it/sec]
INFO - 10:03:33: ... 51%|█████ | 102/200 [00:08<00:04, 22.46 it/sec]
INFO - 10:03:33: ... 52%|█████▏ | 104/200 [00:09<00:04, 22.04 it/sec]
INFO - 10:03:34: ... 53%|█████▎ | 106/200 [00:09<00:04, 21.64 it/sec]
INFO - 10:03:34: ... 53%|█████▎ | 106/200 [00:09<00:04, 21.63 it/sec]
INFO - 10:03:34: Optimization result:
INFO - 10:03:34: Optimizer info:
INFO - 10:03:34: Status: None
INFO - 10:03:34: Message: Successive iterates of the objective function are closer than ftol_rel or ftol_abs. GEMSEO Stopped the driver
INFO - 10:03:34: Number of calls to the objective function by the optimizer: 106
INFO - 10:03:34: Solution:
INFO - 10:03:34: The solution is feasible.
INFO - 10:03:34: Objective: 170.90194735674362
INFO - 10:03:34: Standardized constraints:
INFO - 10:03:34: volume fraction - 0.3 = -1.5002556197907246e-06
INFO - 10:03:34: *** End MDOScenario execution (time: 0:00:09.263465) ***
{'max_iter': 200, 'algo': 'NLOPT_MMA'}
Results¶
Post-process the optmization history:
scenario.post_process(
"BasicHistory",
variable_names=["compliance"],
save=True,
show=False,
file_name=problem_name + "_history.png",
)
Out:
<gemseo.post.basic_history.BasicHistory object at 0x7fdbfb433b80>

Plot the solution
plt.ion() # Ensure that redrawing is possible
fig, ax = plt.subplots()
im = ax.imshow(
-scenario.optimization_result.x_opt.reshape((n_x, n_y)).T,
cmap="gray",
interpolation="none",
norm=colors.Normalize(vmin=-1, vmax=0),
)
fig.show()
im.set_array(-scenario.optimization_result.x_opt.reshape((n_x, n_y)).T)
fig.canvas.draw()
plt.savefig(problem_name + "_solution.png")


Total running time of the script: ( 0 minutes 9.865 seconds)