Note
Go to the end to download the full example code
Parametric scalable MDO problem - MDF¶
We define
a ScalableProblem
with a shared design variable of size 1
and 2 strongly coupled disciplines.
The first one has a local design variable of size 1
and a coupling variable of size 2
while the second one has a local design variable of size 3
and a coupling variable of size 4.
We would like to solve this MDO problem by means of an MDF formulation.
from __future__ import annotations
from gemseo import configure_logger
from gemseo import execute_algo
from gemseo import execute_post
from gemseo import generate_n2_plot
from gemseo.problems.scalable.parametric.core.scalable_discipline_settings import (
ScalableDisciplineSettings,
)
from gemseo.problems.scalable.parametric.scalable_problem import ScalableProblem
configure_logger()
<RootLogger root (INFO)>
Instantiation of the scalable problem¶
problem = ScalableProblem(
[ScalableDisciplineSettings(1, 2), ScalableDisciplineSettings(3, 4)], 1
)
Display the coupling structure¶
generate_n2_plot(problem.disciplines, save=False, show=True)

Solve the MDO using an MDF formulation¶
scenario = problem.create_scenario()
scenario.execute({"algo": "NLOPT_SLSQP", "max_iter": 100})
INFO - 16:25:34:
INFO - 16:25:34: *** Start MDOScenario execution ***
INFO - 16:25:34: MDOScenario
INFO - 16:25:34: Disciplines: MainDiscipline ScalableDiscipline[1] ScalableDiscipline[2]
INFO - 16:25:34: MDO formulation: MDF
INFO - 16:25:34: Optimization problem:
INFO - 16:25:34: minimize f(x_0, x_1, x_2)
INFO - 16:25:34: with respect to x_0, x_1, x_2
INFO - 16:25:34: subject to constraints:
INFO - 16:25:34: c_1(x_0, x_1, x_2) <= 0.0
INFO - 16:25:34: c_2(x_0, x_1, x_2) <= 0.0
INFO - 16:25:34: over the design space:
INFO - 16:25:34: | Parameter space |
INFO - 16:25:34: +------+-------------+-------+-------------+-------+----------------------+
INFO - 16:25:34: | name | lower_bound | value | upper_bound | type | Initial distribution |
INFO - 16:25:34: +------+-------------+-------+-------------+-------+----------------------+
INFO - 16:25:34: | x_0 | 0 | 0.5 | 1 | float | |
INFO - 16:25:34: | x_1 | 0 | 0.5 | 1 | float | |
INFO - 16:25:34: | x_2 | 0 | 0.5 | 1 | float | |
INFO - 16:25:34: | x_2 | 0 | 0.5 | 1 | float | |
INFO - 16:25:34: | x_2 | 0 | 0.5 | 1 | float | |
INFO - 16:25:34: +------+-------------+-------+-------------+-------+----------------------+
INFO - 16:25:34: Solving optimization problem with algorithm NLOPT_SLSQP:
INFO - 16:25:34: ... 0%| | 0/100 [00:00<?, ?it]
INFO - 16:25:34: ... 1%| | 1/100 [00:00<00:04, 20.73 it/sec, obj=1]
INFO - 16:25:34: ... 2%|▏ | 2/100 [00:00<00:09, 10.16 it/sec, obj=0.921]
INFO - 16:25:34: ... 3%|▎ | 3/100 [00:00<00:06, 15.19 it/sec, obj=0.513]
INFO - 16:25:34: ... 4%|▍ | 4/100 [00:00<00:09, 10.31 it/sec, obj=0.438]
INFO - 16:25:34: ... 5%|▌ | 5/100 [00:00<00:08, 10.95 it/sec, obj=0.418]
INFO - 16:25:34: ... 6%|▌ | 6/100 [00:00<00:08, 11.37 it/sec, obj=0.416]
INFO - 16:25:34: ... 7%|▋ | 7/100 [00:00<00:07, 11.68 it/sec, obj=0.415]
INFO - 16:25:35: ... 8%|▊ | 8/100 [00:00<00:07, 11.90 it/sec, obj=0.415]
INFO - 16:25:35: ... 9%|▉ | 9/100 [00:00<00:07, 12.09 it/sec, obj=0.415]
INFO - 16:25:35: ... 10%|█ | 10/100 [00:00<00:07, 12.23 it/sec, obj=0.415]
INFO - 16:25:35: ... 11%|█ | 11/100 [00:00<00:07, 12.36 it/sec, obj=0.415]
INFO - 16:25:35: ... 12%|█▏ | 12/100 [00:00<00:07, 12.47 it/sec, obj=0.415]
INFO - 16:25:35: ... 13%|█▎ | 13/100 [00:01<00:06, 12.55 it/sec, obj=0.415]
INFO - 16:25:35: ... 14%|█▍ | 14/100 [00:01<00:06, 13.50 it/sec, obj=Not evaluated]
INFO - 16:25:35: Optimization result:
INFO - 16:25:35: Optimizer info:
INFO - 16:25:35: Status: None
INFO - 16:25:35: Message: Successive iterates of the design variables are closer than xtol_rel or xtol_abs. GEMSEO Stopped the driver
INFO - 16:25:35: Number of calls to the objective function by the optimizer: 15
INFO - 16:25:35: Solution:
INFO - 16:25:35: The solution is feasible.
INFO - 16:25:35: Objective: 0.4147214934939104
INFO - 16:25:35: Standardized constraints:
INFO - 16:25:35: c_1 = [-0.32430624 -0.43254418]
INFO - 16:25:35: c_2 = [-1.11022302e-16 -2.51297019e-01 -2.35380057e-01 -4.99967998e-01]
INFO - 16:25:35: +---------------------------------------------------------------------------------------+
INFO - 16:25:35: | Parameter space |
INFO - 16:25:35: +------+-------------+---------------------+-------------+-------+----------------------+
INFO - 16:25:35: | name | lower_bound | value | upper_bound | type | Initial distribution |
INFO - 16:25:35: +------+-------------+---------------------+-------------+-------+----------------------+
INFO - 16:25:35: | x_0 | 0 | 0.4836327085400906 | 1 | float | |
INFO - 16:25:35: | x_1 | 0 | 0.9999999999999998 | 1 | float | |
INFO - 16:25:35: | x_2 | 0 | 0.08671672721432457 | 1 | float | |
INFO - 16:25:35: | x_2 | 0 | 0.9085358010297667 | 1 | float | |
INFO - 16:25:35: | x_2 | 0 | 0.2480176715968743 | 1 | float | |
INFO - 16:25:35: +------+-------------+---------------------+-------------+-------+----------------------+
INFO - 16:25:35: *** End MDOScenario execution (time: 0:00:01.056727) ***
{'max_iter': 100, 'algo': 'NLOPT_SLSQP'}
Post-process the results¶
scenario.post_process("OptHistoryView", save=False, show=True)
/home/docs/checkouts/readthedocs.org/user_builds/gemseo/envs/5.0.0/lib/python3.9/site-packages/genson/schema/strategies/base.py:42: UserWarning: Schema incompatible. Keyword 'description' has conflicting values ('The width and height of the figure in inches, e.g. ``(w, h)``.\nIf ``None``, use the :attr:`.OptPostProcessor.DEFAULT_FIG_SIZE`\nof the post-processor.' vs. 'The width and height of the figure in inches, e.g. `(w, h)`.\nIf ``None``, use the :attr:`.OptPostProcessor.DEFAULT_FIG_SIZE`\nof the post-processor.'). Using 'The width and height of the figure in inches, e.g. ``(w, h)``.\nIf ``None``, use the :attr:`.OptPostProcessor.DEFAULT_FIG_SIZE`\nof the post-processor.'
warn(('Schema incompatible. Keyword {0!r} has conflicting '
<gemseo.post.opt_history_view.OptHistoryView object at 0x7fea489c2760>
Solve the associated quadratic programming problem¶
problem = problem.create_quadratic_programming_problem()
execute_algo(problem, algo_name="NLOPT_SLSQP", max_iter=100)
INFO - 16:25:36: Optimization problem:
INFO - 16:25:36: minimize f = 0.5x'Qx + c'x + d
INFO - 16:25:36: with respect to x
INFO - 16:25:36: subject to constraints:
INFO - 16:25:36: g: Ax-b <= 0 <= 0.0
INFO - 16:25:36: over the design space:
INFO - 16:25:36: +------+-------------+-------+-------------+-------+
INFO - 16:25:36: | name | lower_bound | value | upper_bound | type |
INFO - 16:25:36: +------+-------------+-------+-------------+-------+
INFO - 16:25:36: | x[0] | 0 | 0.5 | 1 | float |
INFO - 16:25:36: | x[1] | 0 | 0.5 | 1 | float |
INFO - 16:25:36: | x[2] | 0 | 0.5 | 1 | float |
INFO - 16:25:36: | x[3] | 0 | 0.5 | 1 | float |
INFO - 16:25:36: | x[4] | 0 | 0.5 | 1 | float |
INFO - 16:25:36: +------+-------------+-------+-------------+-------+
INFO - 16:25:36: Solving optimization problem with algorithm NLOPT_SLSQP:
INFO - 16:25:36: ... 0%| | 0/100 [00:00<?, ?it]
INFO - 16:25:36: ... 1%| | 1/100 [00:00<00:00, 2056.03 it/sec, obj=1]
INFO - 16:25:36: ... 2%|▏ | 2/100 [00:00<00:00, 522.13 it/sec, obj=0.921]
INFO - 16:25:36: ... 3%|▎ | 3/100 [00:00<00:00, 732.93 it/sec, obj=0.513]
INFO - 16:25:36: ... 4%|▍ | 4/100 [00:00<00:00, 509.34 it/sec, obj=0.438]
INFO - 16:25:36: ... 5%|▌ | 5/100 [00:00<00:00, 520.82 it/sec, obj=0.418]
INFO - 16:25:36: ... 6%|▌ | 6/100 [00:00<00:00, 526.42 it/sec, obj=0.416]
INFO - 16:25:36: ... 7%|▋ | 7/100 [00:00<00:00, 533.06 it/sec, obj=0.415]
INFO - 16:25:36: ... 8%|▊ | 8/100 [00:00<00:00, 538.75 it/sec, obj=0.415]
INFO - 16:25:36: ... 9%|▉ | 9/100 [00:00<00:00, 541.53 it/sec, obj=0.415]
INFO - 16:25:36: ... 10%|█ | 10/100 [00:00<00:00, 545.80 it/sec, obj=0.415]
INFO - 16:25:36: ... 11%|█ | 11/100 [00:00<00:00, 548.18 it/sec, obj=0.415]
INFO - 16:25:36: ... 12%|█▏ | 12/100 [00:00<00:00, 549.95 it/sec, obj=0.415]
INFO - 16:25:36: ... 13%|█▎ | 13/100 [00:00<00:00, 589.06 it/sec, obj=0.415]
INFO - 16:25:36: Optimization result:
INFO - 16:25:36: Optimizer info:
INFO - 16:25:36: Status: None
INFO - 16:25:36: Message: Successive iterates of the objective function are closer than ftol_rel or ftol_abs. GEMSEO Stopped the driver
INFO - 16:25:36: Number of calls to the objective function by the optimizer: 15
INFO - 16:25:36: Solution:
INFO - 16:25:36: The solution is feasible.
INFO - 16:25:36: Objective: 0.414721553468123
INFO - 16:25:36: Standardized constraints:
INFO - 16:25:36: g = [-3.24306238e-01 -4.32544172e-01 -4.44089210e-16 -2.51297007e-01
INFO - 16:25:36: -2.35380057e-01 -4.99968031e-01]
INFO - 16:25:36: Design space:
INFO - 16:25:36: +------+-------------+---------------------+-------------+-------+
INFO - 16:25:36: | name | lower_bound | value | upper_bound | type |
INFO - 16:25:36: +------+-------------+---------------------+-------------+-------+
INFO - 16:25:36: | x[0] | 0 | 0.4836327595359132 | 1 | float |
INFO - 16:25:36: | x[1] | 0 | 0.9999999999999998 | 1 | float |
INFO - 16:25:36: | x[2] | 0 | 0.08671677713547089 | 1 | float |
INFO - 16:25:36: | x[3] | 0 | 0.9085357909356101 | 1 | float |
INFO - 16:25:36: | x[4] | 0 | 0.2480176979962943 | 1 | float |
INFO - 16:25:36: +------+-------------+---------------------+-------------+-------+
Optimization result:
Design variables: [0.48363276 1. 0.08671678 0.90853579 0.2480177 ]
Objective function: 0.414721553468123
Feasible solution: True
Post-process the results¶
execute_post(problem, "OptHistoryView", save=False, show=True)
<gemseo.post.opt_history_view.OptHistoryView object at 0x7fea48558040>
Total running time of the script: ( 0 minutes 4.217 seconds)