# Comparing sensitivity indices¶

from __future__ import annotations

from gemseo.uncertainty.sensitivity.correlation.analysis import CorrelationAnalysis
from gemseo.uncertainty.sensitivity.morris.analysis import MorrisAnalysis
from gemseo.uncertainty.use_cases.ishigami.ishigami_discipline import IshigamiDiscipline
from gemseo.uncertainty.use_cases.ishigami.ishigami_space import IshigamiSpace


In this example, we consider the Ishigami function [IH90]

$f(x_1,x_2,x_3)=\sin(x_1)+7\sin(x_2)^2+0.1x_3^4\sin(x_1)$

implemented as an MDODiscipline by the IshigamiDiscipline. It is commonly used with the independent random variables $$X_1$$, $$X_2$$ and $$X_3$$ uniformly distributed between $$-\pi$$ and $$\pi$$ and defined in the IshigamiSpace.

discipline = IshigamiDiscipline()
uncertain_space = IshigamiSpace()


We would like to carry out two sensitivity analyses, e.g. a first one based on correlation coefficients and a second one based on the Morris methodology, and compare the results,

Firstly, we create a CorrelationAnalysis and compute the sensitivity indices:

correlation = CorrelationAnalysis([discipline], uncertain_space, 10)
correlation.compute_indices()

{<Method.KENDALL: 'Kendall'>: {'y': [{'x1': array([0.55555556]), 'x2': array([0.02222222]), 'x3': array([-0.11111111])}]}, <Method.PCC: 'PCC'>: {'y': [{'x1': array([0.84696461]), 'x2': array([0.68814608]), 'x3': array([-0.29846394])}]}, <Method.PEARSON: 'Pearson'>: {'y': [{'x1': array([0.685388]), 'x2': array([0.09681897]), 'x3': array([-0.23027298])}]}, <Method.PRCC: 'PRCC'>: {'y': [{'x1': array([0.90374102]), 'x2': array([0.76539572]), 'x3': array([-0.02232206])}]}, <Method.SPEARMAN: 'Spearman'>: {'y': [{'x1': array([0.74545455]), 'x2': array([0.04242424]), 'x3': array([-0.09090909])}]}, <Method.SRC: 'SRC'>: {'y': [{'x1': array([0.94001308]), 'x2': array([0.55748872]), 'x3': array([-0.16157012])}]}, <Method.SRRC: 'SRRC'>: {'y': [{'x1': array([1.06252802]), 'x2': array([0.60167726]), 'x3': array([-0.00959941])}]}, <Method.SSRC: 'SSRC'>: {'y': [{'x1': array([0.88362459]), 'x2': array([0.31079367]), 'x3': array([0.0261049])}]}}


Then, we create a MorrisAnalysis and compute the sensitivity indices:

morris = MorrisAnalysis([discipline], uncertain_space, 10)
morris.compute_indices()

{'MU': {'y': [{'x1': array([-0.36000398]), 'x2': array([0.77781853]), 'x3': array([-0.70990541])}]}, 'MU_STAR': {'y': [{'x1': array([0.67947346]), 'x2': array([0.88906579]), 'x3': array([0.72694219])}]}, 'SIGMA': {'y': [{'x1': array([0.98724949]), 'x2': array([0.79064599]), 'x3': array([0.8074493])}]}, 'RELATIVE_SIGMA': {'y': [{'x1': array([1.45296254]), 'x2': array([0.88929976]), 'x3': array([1.11074761])}]}, 'MIN': {'y': [{'x1': array([0.0338188]), 'x2': array([0.11821721]), 'x3': array([8.72820113e-05])}]}, 'MAX': {'y': [{'x1': array([2.2360336]), 'x2': array([1.83987522]), 'x3': array([2.12052546])}]}}


Lastly, we compare these analyses with the graphical method SensitivityAnalysis.plot_comparison(), either using a bar chart:

morris.plot_comparison(correlation, "y", use_bar_plot=True, save=False, show=True)

<gemseo.post.dataset.bars.BarPlot object at 0x7fea39ab66a0>


morris.plot_comparison(correlation, "y", use_bar_plot=False, save=False, show=True)

<gemseo.post.dataset.radar_chart.RadarChart object at 0x7fea3a0fa7f0>