Note
Go to the end to download the full example code
Gaussian Mixtures¶
Load Iris dataset and create clusters.
from __future__ import annotations
from gemseo import configure_logger
from gemseo import create_benchmark_dataset
from gemseo.datasets.dataset import Dataset
from gemseo.mlearning import create_clustering_model
from gemseo.post.dataset.scatter_plot_matrix import ScatterMatrix
from numpy import array
configure_logger()
<RootLogger root (INFO)>
Create dataset¶
We import the Iris benchmark dataset through the API.
iris = create_benchmark_dataset("IrisDataset")
# Extract inputs as a new dataset
data = iris.get_view(group_names=iris.PARAMETER_GROUP).to_numpy()
variables = iris.get_variable_names(iris.PARAMETER_GROUP)
print(variables)
dataset = Dataset.from_array(data, variables)
['petal_length', 'petal_width', 'sepal_length', 'sepal_width']
Create clustering model¶
We know that there are three classes of Iris plants. We will thus try to identify three clusters.
model = create_clustering_model("GaussianMixture", data=dataset, n_components=3)
model.learn()
print(model)
GaussianMixture(n_components=3, var_names=None)
based on the scikit-learn library
built from 150 learning samples
Predict output¶
Once it is built, we can use it for prediction.
input_value = {
"sepal_length": array([4.5]),
"sepal_width": array([3.0]),
"petal_length": array([1.0]),
"petal_width": array([0.2]),
}
output_value = model.predict(input_value)
print(output_value)
2
Plot clusters¶
Show cluster labels
dataset.add_variable("gm_specy", model.labels.reshape((-1, 1)), "labels")
ScatterMatrix(dataset, kde=True, classifier="gm_specy").execute(save=False, show=True)

/home/docs/checkouts/readthedocs.org/user_builds/gemseo/envs/5.0.1/lib/python3.9/site-packages/gemseo/post/dataset/scatter_plot_matrix.py:137: UserWarning: To output multiple subplots, the figure containing the passed axes is being cleared.
sub_axes = scatter_matrix(
[<Figure size 640x480 with 16 Axes>]
Total running time of the script: ( 0 minutes 0.913 seconds)