gemseo / utils / derivatives

Show inherited members

finite_differences module

Gradient approximation by finite differences.

class gemseo.utils.derivatives.finite_differences.FirstOrderFD(f_pointer, step=None, design_space=None, normalize=True, parallel=False, **parallel_args)[source]

Bases: GradientApproximator

First-order finite differences approximator.

\[\begin{split}\frac{df(x)}{dx}\approx\frac{f(x+\\delta x)-f(x)}{\\delta x}\end{split}\]
  • f_pointer (Callable[[ndarray], ndarray]) – The pointer to the function to derive.

  • step (float | complex | ndarray | None) – The default differentiation step.

  • design_space (DesignSpace | None) – The design space containing the upper bounds of the input variables. If None, consider that the input variables are unbounded.

  • normalize (bool) –

    Whether to normalize the function.

    By default it is set to True.

  • parallel (bool) –

    Whether to differentiate the function in parallel.

    By default it is set to False.

  • **parallel_args (Any) – The parallel execution options, see gemseo.core.parallel_execution.

compute_optimal_step(x_vect, numerical_error=2.220446049250313e-16, **kwargs)[source]

Compute the gradient by real step.

  • x_vect (ndarray) – The input vector.

  • numerical_error (float) –

    The numerical error associated to the calculation of \(f\). By default, machine epsilon (appx 1e-16), but can be higher. when the calculation of \(f\) requires a numerical resolution.

    By default it is set to 2.220446049250313e-16.

  • **kwargs – The additional arguments passed to the function.


The optimal steps. The errors.

Return type:

tuple[numpy.ndarray, numpy.ndarray]

f_pointer: Callable[[ndarray], ndarray]

The pointer to the function to derive.