random_forest module¶
The random forest algorithm for classification.
The random forest classification model uses averaging methods on an ensemble of decision trees.
Dependence¶
The classifier relies on the RandomForestClassifier class of the scikit-learn library.
- class gemseo.mlearning.classification.random_forest.RandomForestClassifier(data, transformer=mappingproxy({}), input_names=None, output_names=None, n_estimators=100, random_state=0, **parameters)[source]¶
Bases:
MLClassificationAlgo
The random forest classification algorithm.
- Parameters:
data (IODataset) – The learning dataset.
transformer (TransformerType) –
The strategies to transform the variables. The values are instances of
Transformer
while the keys are the names of either the variables or the groups of variables, e.g."inputs"
or"outputs"
in the case of the regression algorithms. If a group is specified, theTransformer
will be applied to all the variables of this group. IfIDENTITY
, do not transform the variables.By default it is set to {}.
input_names (Iterable[str] | None) – The names of the input variables. If
None
, consider all the input variables of the learning dataset.output_names (Iterable[str] | None) – The names of the output variables. If
None
, consider all the output variables of the learning dataset.n_estimators (int) –
The number of trees in the forest.
By default it is set to 100.
random_state (int | None) –
The random state passed to the random number generator. Use an integer for reproducible results.
By default it is set to 0.
**parameters (int | float | bool | str | None) – The parameters of the machine learning algorithm.
- Raises:
ValueError – When both the variable and the group it belongs to have a transformer.
- DataFormatters¶
alias of
SupervisedDataFormatters
- learn(samples=None, fit_transformers=True)¶
Train the machine learning algorithm from the learning dataset.
- load_algo(directory)¶
Load a machine learning algorithm from a directory.
- Parameters:
directory (str | Path) – The path to the directory where the machine learning algorithm is saved.
- Return type:
None
- predict(input_data, *args, **kwargs)¶
Evaluate
func
with either array or dictionary-based input data.Firstly, the pre-processing stage converts the input data to a NumPy data array, if these data are expressed as a dictionary of NumPy data arrays.
Then, the processing evaluates the function
func
from this NumPy input data array.Lastly, the post-processing transforms the output data to a dictionary of output NumPy data array if the input data were passed as a dictionary of NumPy data arrays.
- Parameters:
algo (MLSupervisedAlgo) – The supervised learning algorithm.
input_data (DataType) – The input data.
*args (Any) – The positional arguments of the function
func
.**kwargs (Any) – The keyword arguments of the function
func
.
- Returns:
The output data with the same type as the input one.
- Return type:
- predict_proba(input_data, *args, **kwargs)¶
Evaluate
func
with either array or dictionary-based input data.Firstly, the pre-processing stage converts the input data to a NumPy data array, if these data are expressed as a dictionary of NumPy data arrays.
Then, the processing evaluates the function
func
from this NumPy input data array.Lastly, the post-processing transforms the output data to a dictionary of output NumPy data array if the input data were passed as a dictionary of NumPy data arrays.
- Parameters:
algo (MLSupervisedAlgo) – The supervised learning algorithm.
input_data (DataType) – The input data.
*args (Any) – The positional arguments of the function
func
.**kwargs (Any) – The keyword arguments of the function
func
.
- Returns:
The output data with the same type as the input one.
- Return type:
- to_pickle(directory=None, path='.', save_learning_set=False)¶
Save the machine learning algorithm.
- Parameters:
directory (str | None) – The name of the directory to save the algorithm.
path (str | Path) –
The path to parent directory where to create the directory.
By default it is set to “.”.
save_learning_set (bool) –
Whether to save the learning set or get rid of it to lighten the saved files.
By default it is set to False.
- Returns:
The path to the directory where the algorithm is saved.
- Return type:
- DEFAULT_TRANSFORMER: DefaultTransformerType = mappingproxy({'inputs': <gemseo.mlearning.transformers.scaler.min_max_scaler.MinMaxScaler object>})¶
The default transformer for the input and output data, if any.
- IDENTITY: Final[DefaultTransformerType] = mappingproxy({})¶
A transformer leaving the input and output variables as they are.
- LIBRARY: Final[str] = 'scikit-learn'¶
The name of the library of the wrapped machine learning algorithm.
- SHORT_ALGO_NAME: ClassVar[str] = 'RF'¶
The short name of the machine learning algorithm, often an acronym.
Typically used for composite names, e.g.
f"{algo.SHORT_ALGO_NAME}_{dataset.name}"
orf"{algo.SHORT_ALGO_NAME}_{discipline.name}"
.
- algo: Any¶
The interfaced machine learning algorithm.
- property learning_samples_indices: Sequence[int]¶
The indices of the learning samples used for the training.
- resampling_results: dict[str, tuple[Resampler, list[MLAlgo], list[ndarray] | ndarray]]¶
The resampler class names bound to the resampling results.
A resampling result is formatted as
(resampler, ml_algos, predictions)
whereresampler
is aResampler
,ml_algos
is the list of the associated machine learning algorithms built during the resampling stage andpredictions
are the predictions obtained with the latter.resampling_results
stores only one resampling result per resampler type (e.g.,"CrossValidation"
,"LeaveOneOut"
and"Boostrap"
).
- transformer: dict[str, Transformer]¶
The strategies to transform the variables, if any.
The values are instances of
Transformer
while the keys are the names of either the variables or the groups of variables, e.g. “inputs” or “outputs” in the case of the regression algorithms. If a group is specified, theTransformer
will be applied to all the variables of this group.