complex_step module¶
Gradient approximation by complex step.
- class gemseo.utils.derivatives.complex_step.ComplexStep(f_pointer, step=None, design_space=None, normalize=True, parallel=False, **parallel_args)[source]¶
Bases:
GradientApproximator
Complex step approximator, performing a second-order gradient calculation.
Enable a much lower step than real finite differences, typically 1e-30, since there is no cancellation error due to a difference calculation.
\[\begin{split}\frac{df(x)}{dx} \approx Im\left( \frac{f(x+j*\\delta x)}{\\delta x} \right)\end{split}\]See Martins, Joaquim RRA, Peter Sturdza, and Juan J. Alonso. “The complex-step derivative approximation.” ACM Transactions on Mathematical Software (TOMS) 29.3 (2003): 245-262.
- Parameters:
f_pointer (Callable[[ndarray], ndarray]) – The pointer to the function to derive.
step (float | complex | ndarray | None) – The default differentiation step.
design_space (DesignSpace | None) – The design space containing the upper bounds of the input variables. If
None
, consider that the input variables are unbounded.normalize (bool) –
Whether to normalize the function.
By default it is set to True.
parallel (bool) –
Whether to differentiate the function in parallel.
By default it is set to False.
**parallel_args (Any) – The parallel execution options, see
gemseo.core.parallel_execution
.
- f_gradient(x_vect, step=None, x_indices=None, **kwargs)[source]¶
Approximate the gradient of the function for a given input vector.
- Parameters:
x_vect (ndarray) – The input vector.
step (complex | None) – The differentiation step. If
None
, use the default differentiation step.x_indices (Sequence[int] | None) – The components of the input vector to be used for the differentiation. If
None
, use all the components.**kwargs (Any) – The optional arguments for the function.
- Returns:
The approximated gradient.
- Return type:
ndarray
- generate_perturbations(n_dim, x_vect, x_indices=None, step=None)¶
Generate the input perturbations from the differentiation step.
These perturbations will be used to compute the output ones.
- Parameters:
n_dim (int) – The input dimension.
x_vect (ndarray) – The input vector.
x_indices (Sequence[int] | None) – The components of the input vector to be used for the differentiation. If
None
, use all the components.step (float | None) – The differentiation step. If
None
, use the default differentiation step.
- Returns:
The input perturbations.
The differentiation step, either one global step or one step by input component.
- Return type:
- f_pointer: Callable[[ndarray], ndarray]¶
The pointer to the function to derive.