Source code for gemseo.uncertainty.statistics.tolerance_interval.normal
# Copyright 2021 IRT Saint Exupéry, https://www.irt-saintexupery.com
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU Lesser General Public
# License version 3 as published by the Free Software Foundation.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
# Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with this program; if not, write to the Free Software Foundation,
# Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
# Contributors:
# INITIAL AUTHORS - initial API and implementation and/or initial
# documentation
# :author: Matthias De Lozzo
# OTHER AUTHORS - MACROSCOPIC CHANGES
"""Computation of tolerance intervals from a data-fitted normal distribution."""
from __future__ import annotations
import openturns as ot
from gemseo.uncertainty.statistics.tolerance_interval.distribution import (
ToleranceInterval,
)
[docs]
class NormalToleranceInterval(ToleranceInterval):
"""Computation of tolerance intervals from a data-fitted normal distribution.
The formulae come from the R library *tolerance* [1]_.
.. [1] Derek S. Young, *tolerance: An R Package for Estimating Tolerance
Intervals*, Journal of Statistical Software, 36(5), 2010
"""
def __init__(
self,
size: int,
mean: float,
std: float,
) -> None:
"""
Args:
mean: The estimation of the mean of the normal distribution.
std: The estimation of the standard deviation of the normal distribution.
""" # noqa: D205 D212 D415
super().__init__(size)
self.__mean = mean
self.__std = std
def _compute_bounds(
self,
coverage: float,
alpha: float,
size: int,
) -> tuple[float, float]:
z_p = ot.Normal().computeQuantile((1 + coverage) / 2.0)[0]
u_term = (1 + 1.0 / size) ** 0.5 * z_p
chi_square = ot.ChiSquare(size - 1)
v_term = ((size - 1) / chi_square.computeQuantile(alpha)[0]) ** 0.5
w_term = (
1
+ (size - 3 - chi_square.computeQuantile(alpha)[0]) / (2 * (size + 1) ** 2)
) ** 0.05
tolerance_factor = u_term * v_term * w_term
return (
self.__mean - tolerance_factor * self.__std,
self.__mean + tolerance_factor * self.__std,
)
def _compute_upper_bound(
self,
coverage: float,
alpha: float,
size: int,
) -> float:
offset = ot.Normal().computeQuantile(coverage)[0] * size**0.5
student = ot.Student(size - 1, offset, 1.0)
student_quantile = student.computeQuantile(1 - alpha)[0]
tolerance_factor = student_quantile / size**0.5
return self.__mean + tolerance_factor * self.__std
def _compute_lower_bound(
self,
coverage: float,
alpha: float,
size: int,
) -> float:
offset = ot.Normal().computeQuantile(coverage)[0] * size**0.5
student = ot.Student(size - 1, offset, 1.0)
student_quantile = student.computeQuantile(1 - alpha)[0]
tolerance_factor = student_quantile / size**0.5
return self.__mean - tolerance_factor * self.__std