Note
Go to the end to download the full example code
PCE regression¶
We want to approximate a discipline with two inputs and two outputs:
\(y_1=1+2x_1+3x_2\)
\(y_2=-1-2x_1-3x_2\)
over the unit hypercube \([0,1]\times[0,1]\).
from __future__ import annotations
from numpy import array
from gemseo import configure_logger
from gemseo import create_design_space
from gemseo import create_discipline
from gemseo import create_parameter_space
from gemseo import create_scenario
from gemseo.mlearning import create_regression_model
from gemseo.mlearning import import_regression_model
configure_logger()
<RootLogger root (INFO)>
Create the discipline to learn¶
We can implement this analytic discipline by means of the
AnalyticDiscipline
class.
expressions = {"y_1": "1+2*x_1+3*x_2", "y_2": "-1-2*x_1-3*x_2"}
discipline = create_discipline(
"AnalyticDiscipline", name="func", expressions=expressions
)
Create the input sampling space¶
We create the input sampling space by adding the variables one by one.
design_space = create_design_space()
design_space.add_variable("x_1", l_b=0.0, u_b=1.0)
design_space.add_variable("x_2", l_b=0.0, u_b=1.0)
Create the learning set¶
We can build a learning set by means of a
DOEScenario
with a full factorial design of
experiments. The number of samples can be equal to 9 for example.
scenario = create_scenario(
[discipline], "DisciplinaryOpt", "y_1", design_space, scenario_type="DOE"
)
scenario.execute({"algo": "fullfact", "n_samples": 9})
INFO - 09:01:49:
INFO - 09:01:49: *** Start DOEScenario execution ***
INFO - 09:01:49: DOEScenario
INFO - 09:01:49: Disciplines: func
INFO - 09:01:49: MDO formulation: DisciplinaryOpt
INFO - 09:01:49: Optimization problem:
INFO - 09:01:49: minimize y_1(x_1, x_2)
INFO - 09:01:49: with respect to x_1, x_2
INFO - 09:01:49: over the design space:
INFO - 09:01:49: +------+-------------+-------+-------------+-------+
INFO - 09:01:49: | Name | Lower bound | Value | Upper bound | Type |
INFO - 09:01:49: +------+-------------+-------+-------------+-------+
INFO - 09:01:49: | x_1 | 0 | None | 1 | float |
INFO - 09:01:49: | x_2 | 0 | None | 1 | float |
INFO - 09:01:49: +------+-------------+-------+-------------+-------+
INFO - 09:01:49: Solving optimization problem with algorithm fullfact:
INFO - 09:01:49: 11%|█ | 1/9 [00:00<00:00, 318.57 it/sec, obj=1]
INFO - 09:01:49: 22%|██▏ | 2/9 [00:00<00:00, 508.31 it/sec, obj=2]
INFO - 09:01:49: 33%|███▎ | 3/9 [00:00<00:00, 654.98 it/sec, obj=3]
INFO - 09:01:49: 44%|████▍ | 4/9 [00:00<00:00, 765.17 it/sec, obj=2.5]
INFO - 09:01:49: 56%|█████▌ | 5/9 [00:00<00:00, 850.84 it/sec, obj=3.5]
INFO - 09:01:49: 67%|██████▋ | 6/9 [00:00<00:00, 924.33 it/sec, obj=4.5]
INFO - 09:01:49: 78%|███████▊ | 7/9 [00:00<00:00, 984.97 it/sec, obj=4]
INFO - 09:01:49: 89%|████████▉ | 8/9 [00:00<00:00, 1036.81 it/sec, obj=5]
INFO - 09:01:49: 100%|██████████| 9/9 [00:00<00:00, 1078.69 it/sec, obj=6]
INFO - 09:01:49: Optimization result:
INFO - 09:01:49: Optimizer info:
INFO - 09:01:49: Status: None
INFO - 09:01:49: Message: None
INFO - 09:01:49: Number of calls to the objective function by the optimizer: 9
INFO - 09:01:49: Solution:
INFO - 09:01:49: Objective: 1.0
INFO - 09:01:49: Design space:
INFO - 09:01:49: +------+-------------+-------+-------------+-------+
INFO - 09:01:49: | Name | Lower bound | Value | Upper bound | Type |
INFO - 09:01:49: +------+-------------+-------+-------------+-------+
INFO - 09:01:49: | x_1 | 0 | 0 | 1 | float |
INFO - 09:01:49: | x_2 | 0 | 0 | 1 | float |
INFO - 09:01:49: +------+-------------+-------+-------------+-------+
INFO - 09:01:49: *** End DOEScenario execution (time: 0:00:00.020310) ***
{'eval_jac': False, 'n_samples': 9, 'algo': 'fullfact'}
Create the regression model¶
Then, we build the linear regression model from the database and displays this model.
prob_space = create_parameter_space()
prob_space.add_random_variable("x_1", "OTUniformDistribution")
prob_space.add_random_variable("x_2", "OTUniformDistribution")
dataset = scenario.to_dataset(opt_naming=False)
model = create_regression_model(
"PCERegressor", data=dataset, probability_space=prob_space, transformer=None
)
model.learn()
model
Predict output¶
Once it is built, we can use it for prediction.
input_value = {"x_1": array([1.0]), "x_2": array([2.0])}
output_value = model.predict(input_value)
output_value
{'y_1': array([9.])}
Save the regression model¶
Lastly, we save the model.
directory = model.to_pickle()
/home/docs/checkouts/readthedocs.org/user_builds/gemseo/envs/5.3.1/lib/python3.9/site-packages/gemseo/mlearning/core/ml_algo.py:359: UserWarning: Pandas doesn't allow columns to be created via a new attribute name - see https://pandas.pydata.org/pandas-docs/stable/indexing.html#attribute-access
self.learning_set.data = {}
Load the regression model¶
In an other study, we could load this model.
loaded_model = import_regression_model(directory)
loaded_model
Use the loaded regression model¶
And use it!
loaded_model.predict(input_value)
{'y_1': array([9.])}
Total running time of the script: (0 minutes 0.197 seconds)