Create a DOE Scenario

from __future__ import annotations

from gemseo import configure_logger
from gemseo import create_design_space
from gemseo import create_discipline
from gemseo import create_scenario
from gemseo import get_available_doe_algorithms
from gemseo import get_available_post_processings

configure_logger()
<RootLogger root (INFO)>

Let \((P)\) be a simple optimization problem:

\[\begin{split}(P) = \left\{ \begin{aligned} & \underset{x\in\mathbb{N}^2}{\text{minimize}} & & f(x) = x_1 + x_2 \\ & \text{subject to} & & -5 \leq x \leq 5 \end{aligned} \right.\end{split}\]

In this example, we will see how to use GEMSEO to solve this problem \((P)\) by means of a Design Of Experiments (DOE)

Define the discipline

Firstly, by means of the create_discipline() API function, we create an MDODiscipline of AnalyticDiscipline type from a Python function:

expressions = {"y": "x1+x2"}
discipline = create_discipline("AnalyticDiscipline", expressions=expressions)

Now, we want to minimize this MDODiscipline over a design of experiments (DOE).

Define the design space

For that, by means of the create_design_space() API function, we define the DesignSpace \([-5, 5]\times[-5, 5]\) by using its DesignSpace.add_variable() method.

design_space = create_design_space()
design_space.add_variable("x1", l_b=-5, u_b=5, var_type="integer")
design_space.add_variable("x2", l_b=-5, u_b=5, var_type="integer")

Define the DOE scenario

Then, by means of the create_scenario() API function, we define a DOEScenario from the MDODiscipline and the DesignSpace defined above:

scenario = create_scenario(
    discipline, "DisciplinaryOpt", "y", design_space, scenario_type="DOE"
)

Execute the DOE scenario

Lastly, we solve the OptimizationProblem included in the DOEScenario defined above by minimizing the objective function over a design of experiments included in the DesignSpace. Precisely, we choose a full factorial design of size \(11^2\):

scenario.execute({"algo": "fullfact", "n_samples": 11**2})
    INFO - 08:59:09:
    INFO - 08:59:09: *** Start DOEScenario execution ***
    INFO - 08:59:09: DOEScenario
    INFO - 08:59:09:    Disciplines: AnalyticDiscipline
    INFO - 08:59:09:    MDO formulation: DisciplinaryOpt
    INFO - 08:59:09: Optimization problem:
    INFO - 08:59:09:    minimize y(x1, x2)
    INFO - 08:59:09:    with respect to x1, x2
    INFO - 08:59:09:    over the design space:
    INFO - 08:59:09:       +------+-------------+-------+-------------+---------+
    INFO - 08:59:09:       | Name | Lower bound | Value | Upper bound | Type    |
    INFO - 08:59:09:       +------+-------------+-------+-------------+---------+
    INFO - 08:59:09:       | x1   |      -5     |  None |      5      | integer |
    INFO - 08:59:09:       | x2   |      -5     |  None |      5      | integer |
    INFO - 08:59:09:       +------+-------------+-------+-------------+---------+
    INFO - 08:59:09: Solving optimization problem with algorithm fullfact:
    INFO - 08:59:09:      1%|          | 1/121 [00:00<00:00, 341.36 it/sec, obj=-10]
    INFO - 08:59:09:      2%|▏         | 2/121 [00:00<00:00, 540.54 it/sec, obj=-9]
    INFO - 08:59:09:      2%|▏         | 3/121 [00:00<00:00, 679.28 it/sec, obj=-8]
    INFO - 08:59:09:      3%|▎         | 4/121 [00:00<00:00, 791.94 it/sec, obj=-7]
    INFO - 08:59:09:      4%|▍         | 5/121 [00:00<00:00, 880.93 it/sec, obj=-6]
    INFO - 08:59:09:      5%|▍         | 6/121 [00:00<00:00, 950.05 it/sec, obj=-5]
    INFO - 08:59:09:      6%|▌         | 7/121 [00:00<00:00, 1006.24 it/sec, obj=-4]
    INFO - 08:59:09:      7%|▋         | 8/121 [00:00<00:00, 1055.90 it/sec, obj=-3]
    INFO - 08:59:09:      7%|▋         | 9/121 [00:00<00:00, 1090.28 it/sec, obj=-2]
    INFO - 08:59:09:      8%|▊         | 10/121 [00:00<00:00, 1126.11 it/sec, obj=-1]
    INFO - 08:59:09:      9%|▉         | 11/121 [00:00<00:00, 1158.79 it/sec, obj=0]
    INFO - 08:59:09:     10%|▉         | 12/121 [00:00<00:00, 1187.29 it/sec, obj=-9]
    INFO - 08:59:09:     11%|█         | 13/121 [00:00<00:00, 1209.97 it/sec, obj=-8]
    INFO - 08:59:09:     12%|█▏        | 14/121 [00:00<00:00, 1232.27 it/sec, obj=-7]
    INFO - 08:59:09:     12%|█▏        | 15/121 [00:00<00:00, 1248.97 it/sec, obj=-6]
    INFO - 08:59:09:     13%|█▎        | 16/121 [00:00<00:00, 1250.37 it/sec, obj=-5]
    INFO - 08:59:09:     14%|█▍        | 17/121 [00:00<00:00, 1266.73 it/sec, obj=-4]
    INFO - 08:59:09:     15%|█▍        | 18/121 [00:00<00:00, 1281.94 it/sec, obj=-3]
    INFO - 08:59:09:     16%|█▌        | 19/121 [00:00<00:00, 1294.56 it/sec, obj=-2]
    INFO - 08:59:09:     17%|█▋        | 20/121 [00:00<00:00, 1306.82 it/sec, obj=-1]
    INFO - 08:59:09:     17%|█▋        | 21/121 [00:00<00:00, 1316.54 it/sec, obj=0]
    INFO - 08:59:09:     18%|█▊        | 22/121 [00:00<00:00, 1327.31 it/sec, obj=1]
    INFO - 08:59:09:     19%|█▉        | 23/121 [00:00<00:00, 1337.97 it/sec, obj=-8]
    INFO - 08:59:09:     20%|█▉        | 24/121 [00:00<00:00, 1348.24 it/sec, obj=-7]
    INFO - 08:59:09:     21%|██        | 25/121 [00:00<00:00, 1357.73 it/sec, obj=-6]
    INFO - 08:59:09:     21%|██▏       | 26/121 [00:00<00:00, 1364.92 it/sec, obj=-5]
    INFO - 08:59:09:     22%|██▏       | 27/121 [00:00<00:00, 1373.13 it/sec, obj=-4]
    INFO - 08:59:09:     23%|██▎       | 28/121 [00:00<00:00, 1378.77 it/sec, obj=-3]
    INFO - 08:59:09:     24%|██▍       | 29/121 [00:00<00:00, 1386.03 it/sec, obj=-2]
    INFO - 08:59:09:     25%|██▍       | 30/121 [00:00<00:00, 1392.84 it/sec, obj=-1]
    INFO - 08:59:09:     26%|██▌       | 31/121 [00:00<00:00, 1399.46 it/sec, obj=0]
    INFO - 08:59:09:     26%|██▋       | 32/121 [00:00<00:00, 1404.69 it/sec, obj=1]
    INFO - 08:59:09:     27%|██▋       | 33/121 [00:00<00:00, 1410.41 it/sec, obj=2]
    INFO - 08:59:09:     28%|██▊       | 34/121 [00:00<00:00, 1413.93 it/sec, obj=-7]
    INFO - 08:59:09:     29%|██▉       | 35/121 [00:00<00:00, 1418.79 it/sec, obj=-6]
    INFO - 08:59:09:     30%|██▉       | 36/121 [00:00<00:00, 1423.61 it/sec, obj=-5]
    INFO - 08:59:09:     31%|███       | 37/121 [00:00<00:00, 1428.53 it/sec, obj=-4]
    INFO - 08:59:09:     31%|███▏      | 38/121 [00:00<00:00, 1432.92 it/sec, obj=-3]
    INFO - 08:59:09:     32%|███▏      | 39/121 [00:00<00:00, 1436.28 it/sec, obj=-2]
    INFO - 08:59:09:     33%|███▎      | 40/121 [00:00<00:00, 1440.39 it/sec, obj=-1]
    INFO - 08:59:09:     34%|███▍      | 41/121 [00:00<00:00, 1442.55 it/sec, obj=0]
    INFO - 08:59:09:     35%|███▍      | 42/121 [00:00<00:00, 1446.30 it/sec, obj=1]
    INFO - 08:59:09:     36%|███▌      | 43/121 [00:00<00:00, 1450.10 it/sec, obj=2]
    INFO - 08:59:09:     36%|███▋      | 44/121 [00:00<00:00, 1453.92 it/sec, obj=3]
    INFO - 08:59:09:     37%|███▋      | 45/121 [00:00<00:00, 1456.72 it/sec, obj=-6]
    INFO - 08:59:09:     38%|███▊      | 46/121 [00:00<00:00, 1460.27 it/sec, obj=-5]
    INFO - 08:59:09:     39%|███▉      | 47/121 [00:00<00:00, 1461.00 it/sec, obj=-4]
    INFO - 08:59:09:     40%|███▉      | 48/121 [00:00<00:00, 1463.92 it/sec, obj=-3]
    INFO - 08:59:09:     40%|████      | 49/121 [00:00<00:00, 1467.00 it/sec, obj=-2]
    INFO - 08:59:09:     41%|████▏     | 50/121 [00:00<00:00, 1469.89 it/sec, obj=-1]
    INFO - 08:59:09:     42%|████▏     | 51/121 [00:00<00:00, 1472.06 it/sec, obj=0]
    INFO - 08:59:09:     43%|████▎     | 52/121 [00:00<00:00, 1474.73 it/sec, obj=1]
    INFO - 08:59:09:     44%|████▍     | 53/121 [00:00<00:00, 1477.50 it/sec, obj=2]
    INFO - 08:59:09:     45%|████▍     | 54/121 [00:00<00:00, 1478.67 it/sec, obj=3]
    INFO - 08:59:09:     45%|████▌     | 55/121 [00:00<00:00, 1480.98 it/sec, obj=4]
    INFO - 08:59:09:     46%|████▋     | 56/121 [00:00<00:00, 1483.40 it/sec, obj=-5]
    INFO - 08:59:09:     47%|████▋     | 57/121 [00:00<00:00, 1485.84 it/sec, obj=-4]
    INFO - 08:59:09:     48%|████▊     | 58/121 [00:00<00:00, 1487.44 it/sec, obj=-3]
    INFO - 08:59:09:     49%|████▉     | 59/121 [00:00<00:00, 1489.65 it/sec, obj=-2]
    INFO - 08:59:09:     50%|████▉     | 60/121 [00:00<00:00, 1490.32 it/sec, obj=-1]
    INFO - 08:59:09:     50%|█████     | 61/121 [00:00<00:00, 1492.22 it/sec, obj=0]
    INFO - 08:59:09:     51%|█████     | 62/121 [00:00<00:00, 1494.24 it/sec, obj=1]
    INFO - 08:59:09:     52%|█████▏    | 63/121 [00:00<00:00, 1496.21 it/sec, obj=2]
    INFO - 08:59:09:     53%|█████▎    | 64/121 [00:00<00:00, 1497.44 it/sec, obj=3]
    INFO - 08:59:09:     54%|█████▎    | 65/121 [00:00<00:00, 1499.24 it/sec, obj=4]
    INFO - 08:59:09:     55%|█████▍    | 66/121 [00:00<00:00, 1499.50 it/sec, obj=5]
    INFO - 08:59:09:     55%|█████▌    | 67/121 [00:00<00:00, 1500.81 it/sec, obj=-4]
    INFO - 08:59:09:     56%|█████▌    | 68/121 [00:00<00:00, 1502.31 it/sec, obj=-3]
    INFO - 08:59:09:     57%|█████▋    | 69/121 [00:00<00:00, 1503.93 it/sec, obj=-2]
    INFO - 08:59:09:     58%|█████▊    | 70/121 [00:00<00:00, 1505.47 it/sec, obj=-1]
    INFO - 08:59:09:     59%|█████▊    | 71/121 [00:00<00:00, 1506.22 it/sec, obj=0]
    INFO - 08:59:09:     60%|█████▉    | 72/121 [00:00<00:00, 1507.76 it/sec, obj=1]
    INFO - 08:59:09:     60%|██████    | 73/121 [00:00<00:00, 1508.23 it/sec, obj=2]
    INFO - 08:59:09:     61%|██████    | 74/121 [00:00<00:00, 1509.62 it/sec, obj=3]
    INFO - 08:59:09:     62%|██████▏   | 75/121 [00:00<00:00, 1511.02 it/sec, obj=4]
    INFO - 08:59:09:     63%|██████▎   | 76/121 [00:00<00:00, 1512.43 it/sec, obj=5]
    INFO - 08:59:09:     64%|██████▎   | 77/121 [00:00<00:00, 1512.34 it/sec, obj=6]
    INFO - 08:59:09:     64%|██████▍   | 78/121 [00:00<00:00, 1513.62 it/sec, obj=-3]
    INFO - 08:59:09:     65%|██████▌   | 79/121 [00:00<00:00, 1513.95 it/sec, obj=-2]
    INFO - 08:59:09:     66%|██████▌   | 80/121 [00:00<00:00, 1515.06 it/sec, obj=-1]
    INFO - 08:59:09:     67%|██████▋   | 81/121 [00:00<00:00, 1516.30 it/sec, obj=0]
    INFO - 08:59:09:     68%|██████▊   | 82/121 [00:00<00:00, 1517.62 it/sec, obj=1]
    INFO - 08:59:09:     69%|██████▊   | 83/121 [00:00<00:00, 1518.40 it/sec, obj=2]
    INFO - 08:59:09:     69%|██████▉   | 84/121 [00:00<00:00, 1519.44 it/sec, obj=3]
    INFO - 08:59:09:     70%|███████   | 85/121 [00:00<00:00, 1520.62 it/sec, obj=4]
    INFO - 08:59:09:     71%|███████   | 86/121 [00:00<00:00, 1520.66 it/sec, obj=5]
    INFO - 08:59:09:     72%|███████▏  | 87/121 [00:00<00:00, 1521.75 it/sec, obj=6]
    INFO - 08:59:09:     73%|███████▎  | 88/121 [00:00<00:00, 1522.90 it/sec, obj=7]
    INFO - 08:59:09:     74%|███████▎  | 89/121 [00:00<00:00, 1524.02 it/sec, obj=-2]
    INFO - 08:59:09:     74%|███████▍  | 90/121 [00:00<00:00, 1524.52 it/sec, obj=-1]
    INFO - 08:59:09:     75%|███████▌  | 91/121 [00:00<00:00, 1525.52 it/sec, obj=0]
    INFO - 08:59:09:     76%|███████▌  | 92/121 [00:00<00:00, 1525.69 it/sec, obj=1]
    INFO - 08:59:09:     77%|███████▋  | 93/121 [00:00<00:00, 1526.50 it/sec, obj=2]
    INFO - 08:59:09:     78%|███████▊  | 94/121 [00:00<00:00, 1527.46 it/sec, obj=3]
    INFO - 08:59:09:     79%|███████▊  | 95/121 [00:00<00:00, 1528.35 it/sec, obj=4]
    INFO - 08:59:09:     79%|███████▉  | 96/121 [00:00<00:00, 1528.84 it/sec, obj=5]
    INFO - 08:59:09:     80%|████████  | 97/121 [00:00<00:00, 1529.65 it/sec, obj=6]
    INFO - 08:59:09:     81%|████████  | 98/121 [00:00<00:00, 1529.79 it/sec, obj=7]
    INFO - 08:59:09:     82%|████████▏ | 99/121 [00:00<00:00, 1530.55 it/sec, obj=8]
    INFO - 08:59:09:     83%|████████▎ | 100/121 [00:00<00:00, 1531.38 it/sec, obj=-1]
    INFO - 08:59:09:     83%|████████▎ | 101/121 [00:00<00:00, 1532.27 it/sec, obj=0]
    INFO - 08:59:09:     84%|████████▍ | 102/121 [00:00<00:00, 1533.23 it/sec, obj=1]
    INFO - 08:59:09:     85%|████████▌ | 103/121 [00:00<00:00, 1533.48 it/sec, obj=2]
    INFO - 08:59:09:     86%|████████▌ | 104/121 [00:00<00:00, 1534.26 it/sec, obj=3]
    INFO - 08:59:09:     87%|████████▋ | 105/121 [00:00<00:00, 1534.23 it/sec, obj=4]
    INFO - 08:59:09:     88%|████████▊ | 106/121 [00:00<00:00, 1535.10 it/sec, obj=5]
    INFO - 08:59:09:     88%|████████▊ | 107/121 [00:00<00:00, 1535.16 it/sec, obj=6]
    INFO - 08:59:09:     89%|████████▉ | 108/121 [00:00<00:00, 1534.83 it/sec, obj=7]
    INFO - 08:59:09:     90%|█████████ | 109/121 [00:00<00:00, 1531.91 it/sec, obj=8]
    INFO - 08:59:09:     91%|█████████ | 110/121 [00:00<00:00, 1532.47 it/sec, obj=9]
    INFO - 08:59:09:     92%|█████████▏| 111/121 [00:00<00:00, 1532.51 it/sec, obj=0]
    INFO - 08:59:09:     93%|█████████▎| 112/121 [00:00<00:00, 1533.24 it/sec, obj=1]
    INFO - 08:59:09:     93%|█████████▎| 113/121 [00:00<00:00, 1533.94 it/sec, obj=2]
    INFO - 08:59:09:     94%|█████████▍| 114/121 [00:00<00:00, 1534.62 it/sec, obj=3]
    INFO - 08:59:09:     95%|█████████▌| 115/121 [00:00<00:00, 1534.88 it/sec, obj=4]
    INFO - 08:59:09:     96%|█████████▌| 116/121 [00:00<00:00, 1535.60 it/sec, obj=5]
    INFO - 08:59:09:     97%|█████████▋| 117/121 [00:00<00:00, 1535.63 it/sec, obj=6]
    INFO - 08:59:09:     98%|█████████▊| 118/121 [00:00<00:00, 1536.29 it/sec, obj=7]
    INFO - 08:59:09:     98%|█████████▊| 119/121 [00:00<00:00, 1536.96 it/sec, obj=8]
    INFO - 08:59:09:     99%|█████████▉| 120/121 [00:00<00:00, 1537.65 it/sec, obj=9]
    INFO - 08:59:09:    100%|██████████| 121/121 [00:00<00:00, 1537.93 it/sec, obj=10]
    INFO - 08:59:09: Optimization result:
    INFO - 08:59:09:    Optimizer info:
    INFO - 08:59:09:       Status: None
    INFO - 08:59:09:       Message: None
    INFO - 08:59:09:       Number of calls to the objective function by the optimizer: 121
    INFO - 08:59:09:    Solution:
    INFO - 08:59:09:       Objective: -10.0
    INFO - 08:59:09:       Design space:
    INFO - 08:59:09:          +------+-------------+-------+-------------+---------+
    INFO - 08:59:09:          | Name | Lower bound | Value | Upper bound | Type    |
    INFO - 08:59:09:          +------+-------------+-------+-------------+---------+
    INFO - 08:59:09:          | x1   |      -5     |   -5  |      5      | integer |
    INFO - 08:59:09:          | x2   |      -5     |   -5  |      5      | integer |
    INFO - 08:59:09:          +------+-------------+-------+-------------+---------+
    INFO - 08:59:09: *** End DOEScenario execution (time: 0:00:00.091001) ***

{'eval_jac': False, 'n_samples': 121, 'algo': 'fullfact'}

The optimum results can be found in the execution log. It is also possible to access them with Scenario.optimization_result:

optimization_result = scenario.optimization_result
f"The solution of P is (x*, f(x*)) = ({optimization_result.x_opt}, {optimization_result.f_opt})"
'The solution of P is (x*, f(x*)) = ([-5. -5.], -10.0)'

Available DOE algorithms

In order to get the list of available DOE algorithms, use:

get_available_doe_algorithms()
['CustomDOE', 'DiagonalDOE', 'OT_SOBOL', 'OT_RANDOM', 'OT_HASELGROVE', 'OT_REVERSE_HALTON', 'OT_HALTON', 'OT_FAURE', 'OT_MONTE_CARLO', 'OT_FACTORIAL', 'OT_COMPOSITE', 'OT_AXIAL', 'OT_OPT_LHS', 'OT_LHS', 'OT_LHSC', 'OT_FULLFACT', 'OT_SOBOL_INDICES', 'fullfact', 'ff2n', 'pbdesign', 'bbdesign', 'ccdesign', 'lhs', 'Halton', 'LHS', 'MC', 'PoissonDisk', 'Sobol']

Available post-processing

In order to get the list of available post-processing algorithms, use:

get_available_post_processings()
['Animation', 'BasicHistory', 'Compromise', 'ConstraintsHistory', 'Correlations', 'DataVersusModel', 'GradientSensitivity', 'HighTradeOff', 'MultiObjectiveDiagram', 'ObjConstrHist', 'OptHistoryView', 'ParallelCoordinates', 'ParetoFront', 'Petal', 'QuadApprox', 'Radar', 'RadarChart', 'Robustness', 'SOM', 'ScatterPareto', 'ScatterPlotMatrix', 'TopologyView', 'VariableInfluence']

You can also look at the examples:

Total running time of the script: (0 minutes 0.106 seconds)

Gallery generated by Sphinx-Gallery