regression_data_formatters module¶
Data formatters for regression algorithms.
- class gemseo.mlearning.data_formatters.regression_data_formatters.RegressionDataFormatters[source]¶
Bases:
SupervisedDataFormatters
Data formatters for regression algorithms.
- classmethod format_dict(func)¶
Make an array-based function be called with a dictionary of NumPy arrays.
- Parameters:
func (Callable[[BaseMLSupervisedAlgo, ndarray, Any, ...], ndarray]) – The function to be called; it takes a NumPy array in input and returns a NumPy array.
- Returns:
A function making the function
func
work with either a NumPy data array or a dictionary of NumPy data arrays indexed by variables names. The evaluation will have the same type as the input data.- Return type:
Callable[[BaseMLSupervisedAlgo, DataType, Any, …], DataType]
- classmethod format_dict_jacobian(func)[source]¶
Make an array-based function callable with a dictionary of NumPy arrays.
- Parameters:
func (Callable[[BaseRegressor, RealArray, Any, ...], RealArray]) – The function to be called; it takes a NumPy array in input and returns a NumPy array.
- Returns:
The wrapped
func
function, callable with either a NumPy data array or a dictionary of numpy data arrays indexed by variables names. The return value will have the same type as the input data.- Return type:
Callable[[BaseRegressor, DataType, Any, …], DataType]
- classmethod format_input_output(func)¶
Make a function robust to type, array shape and data transformation.
- Parameters:
func (Callable[[BaseMLSupervisedAlgo, ndarray, Any, ...], ndarray]) – The function of interest to be called.
- Returns:
A function calling the function of interest
func
, while guaranteeing consistency in terms of data type and array shape, and applying input and/or output data transformation if required.- Return type:
Callable[[BaseMLSupervisedAlgo, DataType, Any, …], DataType]
- classmethod format_samples(func)¶
Make a 2D NumPy array-based function work with 1D NumPy array.
- Parameters:
func (Callable[[BaseMLSupervisedAlgo, ndarray, Any, ...], ndarray]) – The function to be called; it takes a 2D NumPy array in input and returns a 2D NumPy array. The first dimension represents the samples while the second one represents the components of the variables.
- Returns:
A function making the function
func
work with either a 1D NumPy array or a 2D NumPy array. The evaluation will have the same dimension as the input data.- Return type:
Callable[[BaseMLSupervisedAlgo, ndarray, Any, …], ndarray]
- classmethod format_transform(transform_inputs=True, transform_outputs=True)¶
Force a function to transform its input and/or output variables.
- Parameters:
- Returns:
A function evaluating a function of interest, after transforming its input data and/or before transforming its output data.
- Return type:
Callable[[Callable[[BaseMLSupervisedAlgo, ndarray, Any, …], ndarray]], Callable[[BaseMLSupervisedAlgo, ndarray, Any, …], ndarray]]
- classmethod transform_jacobian(func)[source]¶
Apply transformation to inputs and inverse transformation to outputs.
- Parameters:
func (Callable[[BaseRegressor, RealArray, Any, ...], RealArray]) – The function of interest to be called.
- Returns:
A function evaluating the function
func
, after transforming its input data and/or before transforming its output data.- Return type:
Callable[[BaseRegressor, RealArray, Any, …], RealArray]