joint module¶
The SciPy-based joint probability distribution.
SPJointDistribution
is a BaseJointDistribution
based on the SciPy library.
Warning
For the moment,
there is no copula that can be used with SPJointDistribution
;
if you want to introduce dependency between random variables,
please consider OTJointDistribution
.
- class gemseo.uncertainty.distributions.scipy.joint.SPJointDistribution(distributions, copula=None)[source]¶
Bases:
BaseJointDistribution
The SciPy-based joint probability distribution.
Initialize self. See help(type(self)) for accurate signature.
- Parameters:
distributions (Sequence[SPDistribution]) – The marginal distributions.
copula (None) – A copula distribution defining the dependency structure between random variables; if
None
, consider an independent copula.
- Raises:
NotImplementedError – When the copula is not
None
.
- compute_cdf(vector)[source]¶
Evaluate the cumulative density function (CDF).
- Parameters:
vector (Iterable[float]) – The description is missing.
- Returns:
The value of the CDF.
- Return type:
RealArray
- compute_inverse_cdf(vector)[source]¶
Evaluate the inverse cumulative density function (ICDF).
- Parameters:
vector (Iterable[float]) – The description is missing.
- Returns:
The value of the ICDF.
- Return type:
RealArray
- compute_samples(n_samples=1)¶
Sample the random variable.
- distribution: _DistributionT¶
The probability distribution of the random variable.
- property marginals: Sequence[BaseDistribution]¶
The marginal distributions.
- math_lower_bound: _VariableT¶
The mathematical lower bound of the random variable.
- math_upper_bound: _VariableT¶
The mathematical upper bound of the random variable.
- num_lower_bound: _VariableT¶
The numerical lower bound of the random variable.
- num_upper_bound: _VariableT¶
The numerical upper bound of the random variable.
- property range: ndarray[Any, dtype[floating[Any]]]¶
The numerical range.
The numerical range is the interval defined by the lower and upper bounds numerically reachable by the random variable.
- property standard_deviation: ndarray[Any, dtype[floating[Any]]]¶
The standard deviation of the random variable.