Source code for gemseo.mlearning

# Copyright 2021 IRT Saint Exupéry, https://www.irt-saintexupery.com
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU Lesser General Public
# License version 3 as published by the Free Software Foundation.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
# Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with this program; if not, write to the Free Software Foundation,
# Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
"""Machine learning functionalities.

This module proposes many high-level functions for creating and loading machine learning
models.
"""

from __future__ import annotations

import json
import logging
from typing import TYPE_CHECKING

from gemseo.datasets.io_dataset import IODataset
from gemseo.mlearning.clustering.algos.base_clusterer import BaseClusterer
from gemseo.mlearning.core.algos.supervised import BaseMLSupervisedAlgo
from gemseo.mlearning.regression.algos.base_regressor import BaseRegressor
from gemseo.mlearning.transformers.scaler.min_max_scaler import MinMaxScaler
from gemseo.utils.constants import READ_ONLY_EMPTY_DICT

if TYPE_CHECKING:
    from gemseo.datasets.dataset import Dataset
    from gemseo.mlearning.classification.algos.base_classifier import BaseClassifier
    from gemseo.mlearning.core.algos.ml_algo import BaseMLAlgo
    from gemseo.mlearning.core.algos.ml_algo import TransformerType

LOGGER = logging.getLogger(__name__)


[docs] def get_mlearning_models() -> list[str]: """Get available machine learning algorithms. Returns: The available machine learning algorithms. """ from gemseo.mlearning.core.algos.factory import MLAlgoFactory return MLAlgoFactory().class_names
[docs] def get_regression_models() -> list[str]: """Get available regression models. Returns: The available regression models. """ from gemseo.mlearning.regression.algos.factory import RegressorFactory return RegressorFactory().class_names
[docs] def get_classification_models() -> list[str]: """Get available classification models. Returns: The available classification models. """ from gemseo.mlearning.classification.algos.factory import ClassifierFactory return ClassifierFactory().class_names
[docs] def get_clustering_models() -> list[str]: """Get available clustering models. Returns: The available clustering models. """ from gemseo.mlearning.clustering.algos.factory import ClustererFactory return ClustererFactory().class_names
[docs] def create_mlearning_model( name: str, data: Dataset, transformer: TransformerType = READ_ONLY_EMPTY_DICT, **parameters, ) -> BaseMLAlgo: """Create a machine learning algorithm from a learning dataset. Args: name: The name of the machine learning algorithm. data: The learning dataset. transformer: The strategies to transform the variables. Values are instances of :class:`.BaseTransformer` while keys are names of either variables or groups of variables. If :attr:`~.BaseMLAlgo.IDENTITY`, do not transform the variables. parameters: The parameters of the machine learning algorithm. Returns: A machine learning model. """ from gemseo.mlearning.core.algos.factory import MLAlgoFactory factory = MLAlgoFactory() return factory.create(name, data=data, transformer=transformer, **parameters)
minmax_inputs = {IODataset.INPUT_GROUP: MinMaxScaler()}
[docs] def create_regression_model( name: str, data: IODataset, transformer: TransformerType = BaseRegressor.DEFAULT_TRANSFORMER, # noqa: E501 **parameters, ) -> BaseRegressor: """Create a regression model from a learning dataset. Args: name: The name of the regression algorithm. data: The learning dataset. transformer: The strategies to transform the variables. Values are instances of :class:`.BaseTransformer` while keys are names of either variables or groups of variables. If :attr:`~.BaseMLAlgo.IDENTITY`, do not transform the variables. parameters: The parameters of the regression model. Returns: A regression model. """ from gemseo.mlearning.regression.algos.factory import RegressorFactory if ( name == "PCERegressor" and isinstance(transformer, dict) and IODataset.INPUT_GROUP in transformer ): LOGGER.warning( "Remove input data transformation because " "PCERegressor does not support transformers." ) del transformer[IODataset.INPUT_GROUP] factory = RegressorFactory() return factory.create(name, data=data, transformer=transformer, **parameters)
[docs] def create_classification_model( name: str, data: IODataset, transformer: TransformerType = BaseMLSupervisedAlgo.DEFAULT_TRANSFORMER, # noqa: E501 **parameters, ) -> BaseClassifier: """Create a classification model from a learning dataset. Args: name: The name of the classification algorithm. data: The learning dataset. transformer: The strategies to transform the variables. Values are instances of :class:`.BaseTransformer` while keys are names of either variables or groups of variables. If :attr:`~.BaseMLAlgo.IDENTITY`, do not transform the variables. parameters: The parameters of the classification model. Returns: A classification model. """ from gemseo.mlearning.classification.algos.factory import ClassifierFactory return ClassifierFactory().create( name, data=data, transformer=transformer, **parameters )
[docs] def create_clustering_model( name: str, data: Dataset, transformer: TransformerType = BaseClusterer.DEFAULT_TRANSFORMER, **parameters, ) -> BaseClusterer: """Create a clustering model from a learning dataset. Args: name: The name of the clustering algorithm. data: The learning dataset. transformer: The strategies to transform the variables. Values are instances of :class:`.BaseTransformer` while keys are names of either variables or groups of variables. If :attr:`~.BaseMLAlgo.IDENTITY`, do not transform the variables. parameters: The parameters of the clustering model. Returns: A clustering model. """ from gemseo.mlearning.clustering.algos.factory import ClustererFactory return ClustererFactory().create( name, data=data, transformer=transformer, **parameters )
[docs] def get_mlearning_options( model_name: str, output_json: bool = False, pretty_print: bool = True ) -> dict[str, str] | str: """Find the available options for a machine learning algorithm. Args: model_name: The name of the machine learning algorithm. output_json: Whether to apply JSON format for the schema. pretty_print: Whether to print the schema in a pretty table. Returns: The options schema of the machine learning algorithm. """ from gemseo.mlearning.core.algos.factory import MLAlgoFactory return _get_options(MLAlgoFactory(), model_name, output_json, pretty_print)
[docs] def get_regression_options( model_name: str, output_json: bool = False, pretty_print: bool = True ) -> dict[str, str] | str: """Find the available options for a regression model. Args: model_name: The name of the regression model. output_json: Whether to apply JSON format for the schema. pretty_print: Print the schema in a pretty table. Returns: The options schema of the regression model. """ from gemseo.mlearning.regression.algos.factory import RegressorFactory return _get_options(RegressorFactory(), model_name, output_json, pretty_print)
[docs] def get_classification_options( model_name: str, output_json: bool = False, pretty_print: bool = True ) -> dict[str, str] | str: """Find the available options for a classification model. Args: model_name: The name of the classification model. output_json: Whether to apply JSON format for the schema. pretty_print: Print the schema in a pretty table. Returns: The options schema of the classification model. """ from gemseo.mlearning.classification.algos.factory import ClassifierFactory return _get_options(ClassifierFactory(), model_name, output_json, pretty_print)
[docs] def get_clustering_options( model_name: str, output_json: bool = False, pretty_print: bool = True ) -> dict[str, str] | str: """Find the available options for a clustering model. Args: model_name: The name of the clustering model. output_json: Whether to apply JSON format for the schema. pretty_print: Print the schema in a pretty table. Returns: The options schema of the clustering model. """ from gemseo.mlearning.clustering.algos.factory import ClustererFactory return _get_options(ClustererFactory(), model_name, output_json, pretty_print)
def _get_options( factory, model_name, output_json, pretty_print ) -> dict[str, str] | str: """Find the available options for a model. Args: factory: The factory of model. model_name: The name of the model. output_json: Whether to apply JSON format for the schema. pretty_print: Print the schema in a pretty table. Returns: The options schema of the model. """ from gemseo import _pretty_print_schema schema = factory.get_class(model_name).Settings.model_json_schema() if pretty_print: _pretty_print_schema(schema) if output_json: return json.dumps(schema) return schema