Source code for gemseo.post.robustness
# Copyright 2021 IRT Saint Exupéry, https://www.irt-saintexupery.com
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU Lesser General Public
# License version 3 as published by the Free Software Foundation.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
# Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with this program; if not, write to the Free Software Foundation,
# Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
# Contributors:
# INITIAL AUTHORS - initial API and implementation and/or initial
# documentation
# :author: Damien Guenot
# :author: Francois Gallard
# OTHER AUTHORS - MACROSCOPIC CHANGES
"""Boxplots to quantify the robustness of the optimum."""
from __future__ import annotations
import logging
from math import sqrt
from typing import ClassVar
import matplotlib.pyplot as plt
from numpy import zeros
from numpy.random import default_rng
from gemseo.post.base_post import BasePost
from gemseo.post.core.robustness_quantifier import RobustnessQuantifier
from gemseo.post.robustness_settings import Robustness_Settings
from gemseo.utils.seeder import SEED
from gemseo.utils.string_tools import repr_variable
LOGGER = logging.getLogger(__name__)
[docs]
class Robustness(BasePost[Robustness_Settings]):
"""Uncertainty quantification at the optimum.
Compute the quadratic approximations of all the output functions, propagate
analytically a normal distribution centered on the optimal design variables with a
standard deviation which is a percentage of the mean passed in option (default: 1%)
and plot the corresponding output boxplot.
"""
SR1_APPROX: ClassVar[str] = "SR1"
Settings: ClassVar[type[Robustness_Settings]] = Robustness_Settings
def _plot(self, settings: Robustness_Settings) -> None:
standard_deviation = settings.stddev
problem = self.optimization_problem
design_space = problem.design_space
bounds_range = design_space.get_upper_bounds() - design_space.get_lower_bounds()
n_x = problem.design_space.dimension
cov = zeros((n_x, n_x))
cov[range(n_x), range(n_x)] = (standard_deviation * bounds_range) ** 2
robustness = RobustnessQuantifier(self.database)
function_samples = []
function_names = []
for func in self.optimization_problem.functions:
func_name = database_func_name = func.name
if self._change_obj and func_name == self._neg_obj_name:
func_name = self._obj_name
dim = func.dim
at_most_niter = int(1.5 * n_x)
for func_index in range(dim):
robustness.compute_approximation(
funcname=database_func_name,
at_most_niter=at_most_niter,
func_index=func_index,
b0_mat=zeros((n_x, n_x)),
)
x_ref = robustness.x_ref
mean = robustness.compute_expected_value(x_ref, cov)
if self._change_obj:
mean = -mean
variance = robustness.compute_variance(x_ref, cov)
if variance > 0: # Otherwise normal doesn't work
function_samples.append(
default_rng(SEED).normal(mean, sqrt(variance), 500)
)
function_names.append(repr_variable(func_name, func_index, dim))
fig = plt.figure(figsize=settings.fig_size)
fig.suptitle(
"Boxplot of the optimization functions "
f"with normalized stddev {standard_deviation}"
)
plt.boxplot(function_samples, showfliers=False, labels=function_names)
fig.tight_layout()