# Copyright 2021 IRT Saint Exupéry, https://www.irt-saintexupery.com
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU Lesser General Public
# License version 3 as published by the Free Software Foundation.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
# Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with this program; if not, write to the Free Software Foundation,
# Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
# Contributors:
# INITIAL AUTHORS - API and implementation and/or documentation
# :author: Charlie Vanaret, Francois Gallard
# OTHER AUTHORS - MACROSCOPIC CHANGES
"""A set of quasi Newton algorithm variants for solving MDAs.
`quasi-Newton methods <https://en.wikipedia.org/wiki/Quasi-Newton_method>`__
"""
from __future__ import annotations
import logging
from typing import TYPE_CHECKING
from typing import Callable
from typing import ClassVar
from numpy import array
from numpy import ndarray
from scipy.optimize import root
from gemseo.mda.base_mda_root import BaseMDARoot
from gemseo.mda.quasi_newton_settings import MDAQuasiNewton_Settings
from gemseo.mda.quasi_newton_settings import QuasiNewtonMethod
if TYPE_CHECKING:
from collections.abc import Sequence
from typing import Any
from gemseo.core.discipline import Discipline
LOGGER = logging.getLogger(__name__)
[docs]
class MDAQuasiNewton(BaseMDARoot):
r"""Quasi-Newton solver for MDA.
`Quasi-Newton methods <https://en.wikipedia.org/wiki/Quasi-Newton_method>`__
include numerous variants (
`Broyden <https://en.wikipedia.org/wiki/Broyden%27s_method>`__,
`Levenberg-Marquardt <https://en.wikipedia.org/wiki/Levenberg-Marquardt_algorithm>`
__, ...).
The name of the variant should be provided via the :code:`method` parameter of the
class.
The new iterate is given by:
.. math::
x_{k+1} = x_k - \\rho_k B_k f(x_k)
where :math:`\\rho_k` is a coefficient chosen in order to minimize the convergence
and :math:`B_k` is an approximation of :math:`Df(x_k)^{-1}`, the inverse of the
Jacobian of :math:`f` at :math:`x_k`.
"""
Settings: ClassVar[type[MDAQuasiNewton_Settings]] = MDAQuasiNewton_Settings
"""The pydantic model for the settings."""
_METHODS_SUPPORTING_CALLBACKS: ClassVar[tuple[QuasiNewtonMethod, ...]] = (
QuasiNewtonMethod.BROYDEN1,
QuasiNewtonMethod.BROYDEN2,
)
"""The methods supporting callback functions."""
disciplines: tuple[Discipline, ...]
"""The disciplines."""
settings: MDAQuasiNewton_Settings
"""The settings of the MDA"""
__current_couplings: ndarray
"""The current values of the coupling variables."""
def __init__(
self,
disciplines: Sequence[Discipline],
settings_model: MDAQuasiNewton_Settings | None = None,
**settings: Any,
) -> None:
"""
Raises:
ValueError: If the method is not a valid quasi-Newton method.
""" # noqa:D205 D212 D415
super().__init__(disciplines, settings_model=settings_model, **settings)
if self.settings.method not in self._METHODS_SUPPORTING_CALLBACKS:
del self.output_grammar[self.NORMALIZED_RESIDUAL_NORM]
def __get_options(self) -> dict[str, float | int]:
"""Get the options adapted to the resolution method."""
options = {}
if self.settings.method in {
QuasiNewtonMethod.BROYDEN1,
QuasiNewtonMethod.BROYDEN2,
QuasiNewtonMethod.ANDERSON,
QuasiNewtonMethod.LINEAR_MIXING,
QuasiNewtonMethod.DIAG_BROYDEN,
QuasiNewtonMethod.EXCITING_MIXING,
QuasiNewtonMethod.KRYLOV,
}:
options["ftol"] = self.settings.tolerance
options["maxiter"] = self.settings.max_mda_iter
elif self.settings.method == QuasiNewtonMethod.LEVENBERG_MARQUARDT:
options["xtol"] = self.settings.tolerance
options["maxiter"] = self.settings.max_mda_iter
elif self.settings.method == QuasiNewtonMethod.DF_SANE:
options["fatol"] = self.settings.tolerance
options["maxfev"] = self.settings.max_mda_iter
else: # Necessarily the HYBRID quasi-Newton method
options["xtol"] = self.settings.tolerance
options["maxfev"] = self.settings.max_mda_iter
return options
def __get_jacobian_computer(self) -> Callable[[ndarray], ndarray] | None:
"""Return the function to compute the jacobian.
Returns:
The callable to compute the jacobian.
"""
if not self.settings.use_gradient:
return None
self.assembly.set_newton_differentiated_ios(self._resolved_variable_names)
def compute_jacobian(
x_vect: ndarray,
) -> ndarray:
"""Linearize all residuals.
Args:
x_vect: The value of the design variables.
Returns:
The linearized residuals.
"""
self._update_local_data_from_array(x_vect)
for discipline in self.disciplines:
discipline.linearize(self.io.data)
self.assembly.compute_sizes(
self._resolved_variable_names,
self._resolved_variable_names,
self._resolved_variable_names,
)
return (
self.assembly.assemble_jacobian(
self._resolved_variable_names,
self._resolved_variable_names,
is_residual=True,
)
.toarray()
.real
)
return compute_jacobian
def __get_residual_history_callback(self) -> Callable[[ndarray, Any], None] | None:
"""Return the callback used to store the residual history."""
if self.settings.method not in self._METHODS_SUPPORTING_CALLBACKS:
return None
def callback(
new_couplings: ndarray,
_,
) -> None:
"""Store the current residual in the history.
Args:
new_couplings: The new coupling variables.
_: ignored
"""
self._compute_normalized_residual_norm()
self.__current_couplings = new_couplings
return callback
def __compute_residuals(
self,
x_vect: ndarray,
) -> ndarray:
"""Evaluate all residuals, possibly in parallel.
Args:
x_vect: The value of the design variables.
Returns:
The residuals.
"""
self.current_iter += 1
# Work on a temporary copy so _update_local_data can be called.
local_data_copy = self.io.data.copy()
self._update_local_data_from_array(x_vect)
local_data_before_execution = self.io.data
self.io.data = local_data_copy
self._execute_disciplines_and_update_local_data(local_data_before_execution)
self._compute_residuals(local_data_before_execution)
return self.assembly.residuals(
local_data_before_execution, self._resolved_variable_names
).real
def _execute(self) -> None:
super()._execute()
self._execute_disciplines_and_update_local_data()
if not self.coupling_structure.strong_couplings:
msg = (
"MDAQuasiNewton found no strong couplings. Executed all"
"disciplines once."
)
LOGGER.warning(msg)
self.io.data[self.NORMALIZED_RESIDUAL_NORM] = array([0.0])
return self.io.data
self.current_iter = 0
if self.reset_history_each_run:
self.residual_history = []
# initial solution
self.__current_couplings = self.get_current_resolved_variables_vector().real
# solve the system
y_opt = root(
self.__compute_residuals,
x0=self.__current_couplings,
method=self.settings.method,
jac=self.__get_jacobian_computer(),
callback=self.__get_residual_history_callback(),
tol=self.settings.tolerance,
options=self.__get_options(),
)
self._warn_convergence_criteria()
self._update_local_data_from_array(y_opt.x)
if self.settings.method in self._METHODS_SUPPORTING_CALLBACKS:
self.io.update_output_data({
self.NORMALIZED_RESIDUAL_NORM: array([self.normed_residual]),
})
return None