Source code for gemseo.mlearning.regression.algos.svm
# Copyright 2021 IRT Saint Exupéry, https://www.irt-saintexupery.com
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU Lesser General Public
# License version 3 as published by the Free Software Foundation.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
# Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with this program; if not, write to the Free Software Foundation,
# Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
# Contributors:
# INITIAL AUTHORS - initial API and implementation and/or initial
# documentation
# :author: Matthias De Lozzo
# OTHER AUTHORS - MACROSCOPIC CHANGES
"""Support vector machine for regression."""
from __future__ import annotations
from typing import TYPE_CHECKING
from typing import ClassVar
from numpy import array
from sklearn.svm import SVR
from gemseo.mlearning.regression.algos.base_regressor import BaseRegressor
from gemseo.mlearning.regression.algos.svm_settings import SVMRegressor_Settings
if TYPE_CHECKING:
from gemseo.typing import NumberArray
[docs]
class SVMRegressor(BaseRegressor):
"""Support vector machine for regression."""
LIBRARY: ClassVar[str] = "scikit-learn"
SHORT_ALGO_NAME: ClassVar[str] = "SVMRegression"
Settings: ClassVar[type[SVMRegressor_Settings]] = SVMRegressor_Settings
def _post_init(self):
super()._post_init()
self.__algo = {
"kernel": self._settings.kernel,
"parameters": self._settings.parameters,
}
self.algo = []
def _fit(
self,
input_data: NumberArray,
output_data: NumberArray,
) -> None:
for _output_data in output_data.T:
self.algo.append(
SVR(
kernel=self.__algo["kernel"],
**self.__algo["parameters"],
)
)
self.algo[-1].fit(input_data, _output_data)
def _predict(
self,
input_data: NumberArray,
) -> NumberArray:
return array([algo.predict(input_data) for algo in self.algo]).T