Source code for gemseo.mlearning.regression.algos.svm

# Copyright 2021 IRT Saint Exupéry, https://www.irt-saintexupery.com
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU Lesser General Public
# License version 3 as published by the Free Software Foundation.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
# Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with this program; if not, write to the Free Software Foundation,
# Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
# Contributors:
#    INITIAL AUTHORS - initial API and implementation and/or initial
#                         documentation
#        :author: Matthias De Lozzo
#    OTHER AUTHORS   - MACROSCOPIC CHANGES
"""Support vector machine for regression."""

from __future__ import annotations

from typing import TYPE_CHECKING
from typing import ClassVar

from numpy import array
from sklearn.svm import SVR

from gemseo.mlearning.regression.algos.base_regressor import BaseRegressor
from gemseo.mlearning.regression.algos.svm_settings import SVMRegressor_Settings

if TYPE_CHECKING:
    from gemseo.typing import NumberArray


[docs] class SVMRegressor(BaseRegressor): """Support vector machine for regression.""" LIBRARY: ClassVar[str] = "scikit-learn" SHORT_ALGO_NAME: ClassVar[str] = "SVMRegression" Settings: ClassVar[type[SVMRegressor_Settings]] = SVMRegressor_Settings def _post_init(self): super()._post_init() self.__algo = { "kernel": self._settings.kernel, "parameters": self._settings.parameters, } self.algo = [] def _fit( self, input_data: NumberArray, output_data: NumberArray, ) -> None: for _output_data in output_data.T: self.algo.append( SVR( kernel=self.__algo["kernel"], **self.__algo["parameters"], ) ) self.algo[-1].fit(input_data, _output_data) def _predict( self, input_data: NumberArray, ) -> NumberArray: return array([algo.predict(input_data) for algo in self.algo]).T