Source code for gemseo.post.constraints_history

# Copyright 2021 IRT Saint Exupéry, https://www.irt-saintexupery.com
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU Lesser General Public
# License version 3 as published by the Free Software Foundation.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
# Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with this program; if not, write to the Free Software Foundation,
# Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
# Contributors:
#    INITIAL AUTHORS - API and implementation and/or documentation
#        :author: Pierre-Jean Barjhoux
#    OTHER AUTHORS   - MACROSCOPIC CHANGES
"""A matrix of constraint history plots."""

from __future__ import annotations

from math import ceil
from typing import ClassVar

from matplotlib import pyplot
from matplotlib.colors import ListedColormap
from matplotlib.colors import SymLogNorm
from matplotlib.ticker import MaxNLocator
from numpy import abs as np_abs
from numpy import arange
from numpy import atleast_2d
from numpy import atleast_3d
from numpy import diff
from numpy import flip
from numpy import interp
from numpy import max as np_max
from numpy import sign

from gemseo.post.base_post import BasePost
from gemseo.post.constraints_history_settings import ConstraintsHistory_Settings
from gemseo.post.core.colormaps import RG_SEISMIC


[docs] class ConstraintsHistory(BasePost[ConstraintsHistory_Settings]): r"""A matrix of constraint history plots. A blue line represents the values of a constraint w.r.t. the iterations. A background color indicates whether the constraint is satisfied (green), active (white) or violated (red). A horizontal black line indicates the value for which an inequality constraint is active or an equality constraint is satisfied, namely :math:`0`. A horizontal black dashed line indicates the value below which an inequality constraint is satisfied *with a tolerance level*, namely :math:`\varepsilon`. For an equality constraint, the horizontal dashed black lines indicate the values between which the constraint is satisfied *with a tolerance level*, namely :math:`-\varepsilon` and :math:`\varepsilon`. A vertical black line indicates the last iteration (or pseudo-iteration) where the constraint is (or should be) active. """ Settings: ClassVar[type[ConstraintsHistory_Settings]] = ConstraintsHistory_Settings def _plot(self, settings: ConstraintsHistory_Settings) -> None: """ Raises: ValueError: When an item of ``constraint_names`` is not a constraint name. """ # noqa: D205, D212, D415 constraint_names = settings.constraint_names line_style = settings.line_style add_points = settings.add_points all_constraint_names = ( self.optimization_problem.constraints.original_to_current_names.keys() ) for constraint_name in constraint_names: if constraint_name not in all_constraint_names: msg = ( "Cannot build constraints history plot, " f"{constraint_name} is not a constraint name." ) raise ValueError(msg) constraint_names = self.optimization_problem.get_function_names( constraint_names ) constraint_histories, constraint_names, _ = self.database.get_history_array( function_names=constraint_names, with_x_vect=False ) # harmonization of tables format because constraints can be vectorial # or scalars. *vals.shape[0] = iteration, *vals.shape[1] = cstr values constraint_histories = atleast_3d(constraint_histories) constraint_histories = constraint_histories.reshape(( constraint_histories.shape[0], constraint_histories.shape[1] * constraint_histories.shape[2], )) # prepare the main window fig, axs = pyplot.subplots( nrows=ceil(len(constraint_names) / 2), ncols=2, sharex=True, figsize=settings.fig_size, ) fig.suptitle("Evolution of the constraints w.r.t. iterations", fontsize=14) iterations = arange(len(constraint_histories)) n_iterations = len(iterations) eq_constraint_names = [ f.name for f in self.optimization_problem.constraints.get_equality_constraints() ] # for each subplot for constraint_history, constraint_name, ax in zip( constraint_histories.T, constraint_names, axs.ravel() ): cmap: str | ListedColormap f_name = constraint_name.split("[")[0] is_eq_constraint = f_name in eq_constraint_names if is_eq_constraint: cmap = "seismic" constraint_type = "equality" tolerance = self.optimization_problem.tolerances.equality else: cmap = RG_SEISMIC constraint_type = "inequality" tolerance = self.optimization_problem.tolerances.inequality # prepare the graph ax.grid(True) ax.set_title(f"{constraint_name} ({constraint_type})") ax.set_xticks(range(n_iterations)) ax.set_xticklabels(range(1, n_iterations + 1)) ax.get_xaxis().set_major_locator(MaxNLocator(integer=True)) ax.axhline(tolerance, color="k", linestyle="--") ax.axhline(0.0, color="k") if is_eq_constraint: ax.axhline(-tolerance, color="k", linestyle="--") # Add line and points ax.plot(iterations, constraint_history, linestyle=line_style) if add_points: ax.scatter(iterations, constraint_history) # Plot color bars maximum = np_max(np_abs(constraint_history)) margin = 2 * maximum * 0.05 ax.imshow( atleast_2d(constraint_history), cmap=cmap, interpolation="nearest", aspect="auto", norm=SymLogNorm(vmin=-maximum, vmax=maximum, linthresh=1.0), extent=[-0.5, n_iterations - 0.5, -maximum - margin, maximum + margin], alpha=0.6, ) # Plot a vertical line at the last iteration (or pseudo-iteration) # where the constraint is (or should be) active. indices_before_sign_change = diff(sign(constraint_history)).nonzero()[0] if indices_before_sign_change.size != 0: index_before_last_sign_change = indices_before_sign_change[-1] indices = [ index_before_last_sign_change, index_before_last_sign_change + 1, ] constraint_values = constraint_history[indices] iteration_values = iterations[indices] if constraint_values[1] < constraint_values[0]: constraint_values = flip(constraint_values) iteration_values = flip(iteration_values) ax.axvline(interp(0.0, constraint_values, iteration_values), color="k") fig.tight_layout() self._add_figure(fig)