Source code for gemseo.problems.optimization.rosen_mf
# Copyright 2021 IRT Saint Exupéry, https://www.irt-saintexupery.com
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU Lesser General Public
# License version 3 as published by the Free Software Foundation.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
# Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with this program; if not, write to the Free Software Foundation,
# Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
# Contributors:
# INITIAL AUTHORS - API and implementation and/or documentation
# :author: Damien Guenot
# :author: Francois Gallard
# OTHER AUTHORS - MACROSCOPIC CHANGES
"""A multi-fidelity Rosenbrock discipline."""
from __future__ import annotations
from typing import TYPE_CHECKING
from numpy import atleast_2d
from numpy import zeros
from scipy.optimize import rosen
from scipy.optimize import rosen_der
from gemseo.core.discipline import Discipline
if TYPE_CHECKING:
from collections.abc import Iterable
from gemseo.typing import StrKeyMapping
[docs]
class RosenMF(Discipline):
r"""A multi-fidelity Rosenbrock discipline.
Its expression is :math:`\mathrm{fidelity} * \mathrm{Rosenbrock}(x)`
where both :math:`\mathrm{fidelity}` and :math:`x` are provided as input data.
"""
auto_detect_grammar_files = True
def __init__(self, dimension: int = 2) -> None:
"""
Args:
dimension: The dimension of the design space.
""" # noqa: D205 D212
super().__init__()
self.io.input_grammar.defaults = {"x": zeros(dimension), "fidelity": 1.0}
def _run(self, input_data: StrKeyMapping) -> StrKeyMapping | None:
fidelity = input_data["fidelity"]
x_val = input_data["x"]
return {"rosen": fidelity * rosen(x_val)}
def _compute_jacobian(
self,
input_names: Iterable[str] = (),
output_names: Iterable[str] = (),
) -> None:
x_val = self.io.data["x"]
fidelity = self.io.data["fidelity"]
self.jac = {
"rosen": {
"x": atleast_2d(fidelity * rosen_der(x_val)),
"fidelity": atleast_2d(rosen(x_val)),
}
}