Source code for gemseo.scenarios.doe_scenario

# Copyright 2021 IRT Saint Exupéry, https://www.irt-saintexupery.com
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU Lesser General Public
# License version 3 as published by the Free Software Foundation.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
# Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with this program; if not, write to the Free Software Foundation,
# Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
# Contributors:
#    INITIAL AUTHORS - initial API and implementation and/or initial
#                        documentation
#        :author: Francois Gallard
#    OTHER AUTHORS   - MACROSCOPIC CHANGES
"""A multidisciplinary scenario to be executed by a design of experiments (DOE)."""

from __future__ import annotations

from typing import TYPE_CHECKING
from typing import ClassVar

from gemseo.algos.doe.factory import DOELibraryFactory
from gemseo.scenarios.base_scenario import BaseScenario

if TYPE_CHECKING:
    from gemseo.datasets.dataset import Dataset


[docs] class DOEScenario(BaseScenario): """A multidisciplinary scenario to be executed by a design of experiments (DOE).""" _ALGO_FACTORY_CLASS: ClassVar[type[DOELibraryFactory]] = DOELibraryFactory
[docs] def to_dataset( # noqa: D102 self, name: str = "", categorize: bool = True, opt_naming: bool = True, export_gradients: bool = False, ) -> Dataset: # The algo is not instantiated again since it is in the factory cache. algo = self._algo_factory.create(self._settings.algo_name) return self.formulation.optimization_problem.to_dataset( name=name, categorize=categorize, opt_naming=opt_naming, export_gradients=export_gradients, input_values=algo.samples, )