scatter_pareto module¶
Scatter plot for multi-objective optimization problems.
- class gemseo_pymoo.post.scatter_pareto.ScatterPareto(opt_problem)[source]
Bases:
OptPostProcessor
Scatter plot with pareto points and points of interest.
See Scatter.
Note
This post-processor assumes the optimization has converged to a well-defined pareto front.
- Parameters:
opt_problem (OptimizationProblem) – The optimization problem to be post-processed.
- Raises:
ValueError – If the JSON grammar file for the options of the post-processor does not exist.
- database: Database
The database generated by the optimization problem.
- fig_name_prefix: str = 'scatter'
The figure’s name prefix.
- fig_title: str = 'Pareto'
The figure’s title.
- font_size: int = 9
The font size for the plot texts.
- materials_for_plotting: dict[Any, Any]
The materials to eventually rebuild the plot in another framework.
- opt_problem: OptimizationProblem
The optimization problem.
- prop_annotation: ClassVar[PlotPropertiesType] = {'fontsize': 7, 'ha': 'center', 'rotation_mode': 'anchor', 'transform_rotates_text': True, 'va': 'bottom'}
The properties for the annotations.
- prop_arrow: ClassVar[PlotPropertiesType] = {'alpha': 0.5, 'arrowstyle': '-|>', 'color': 'black', 'mutation_scale': 12}
The properties for the arrows.
- prop_extra: ClassVar[PlotPropertiesType] = {'alpha': 0.8, 's': 30, 'zorder': 2}
The properties for the extra points.
- prop_front: ClassVar[PlotPropertiesType] = {'alpha': 0.2, 'color': 'blue', 's': 10, 'zorder': 1}
The properties for the pareto points.
- prop_interest: ClassVar[PlotPropertiesType] = {'alpha': 1.0, 's': 30, 'zorder': 3}
The properties for the points of interest.