Note
Go to the end to download the full example code.
Save a scenario for post-processing#
from __future__ import annotations
from gemseo import create_design_space
from gemseo import create_discipline
from gemseo import create_scenario
We consider a minimization problem over the interval \([0,1]\) of the \(f(x)=x^2\) objective function:
discipline = create_discipline("AnalyticDiscipline", expressions={"y": "x**2"})
design_space = create_design_space()
design_space.add_variable("x", lower_bound=0.0, upper_bound=1.0)
scenario = create_scenario(
[discipline], "y", design_space, formulation_name="DisciplinaryOpt"
)
We solve this optimization problem with the gradient-free algorithm COBYLA:
scenario.execute(algo_name="NLOPT_COBYLA", max_iter=10)
Then, we save the results to an HDF5 file for future post-processing:
scenario.save_optimization_history("my_results.hdf")
See also