Note
Go to the end to download the full example code.
Create a surrogate discipline#
We want to build an Discipline
based on a regression model approximating the following discipline
with two inputs and two outputs:
\(y_1=1+2x_1+3x_2\)
\(y_2=-1-2x_1-3x_2\)
over the unit hypercube \([0,1]\times[0,1]\).
For that,
we use a SurrogateDiscipline
relying on an BaseRegressor
.
from __future__ import annotations
from numpy import array
from gemseo import configure_logger
from gemseo import create_design_space
from gemseo import create_discipline
from gemseo import create_scenario
from gemseo import create_surrogate
Import#
configure_logger()
<RootLogger root (INFO)>
Create the discipline to learn#
We can implement this analytic discipline by means of the
AnalyticDiscipline
class.
expressions = {"y_1": "1+2*x_1+3*x_2", "y_2": "-1-2*x_1-3*x_2"}
discipline = create_discipline(
"AnalyticDiscipline", name="func", expressions=expressions
)
Create the input sampling space#
We create the input sampling space by adding the variables one by one.
design_space = create_design_space()
design_space.add_variable("x_1", lower_bound=0.0, upper_bound=1.0)
design_space.add_variable("x_2", lower_bound=0.0, upper_bound=1.0)
Create the learning set#
We can build a learning set by means of a
DOEScenario
with a full factorial design of
experiments. The number of samples can be equal to 9 for example.
scenario = create_scenario(
[discipline],
"y_1",
design_space,
scenario_type="DOE",
formulation_name="DisciplinaryOpt",
)
scenario.execute(algo_name="PYDOE_FULLFACT", n_samples=9)
INFO - 08:37:52:
INFO - 08:37:52: *** Start DOEScenario execution ***
INFO - 08:37:52: DOEScenario
INFO - 08:37:52: Disciplines: func
INFO - 08:37:52: MDO formulation: DisciplinaryOpt
INFO - 08:37:52: Optimization problem:
INFO - 08:37:52: minimize y_1(x_1, x_2)
INFO - 08:37:52: with respect to x_1, x_2
INFO - 08:37:52: over the design space:
INFO - 08:37:52: +------+-------------+-------+-------------+-------+
INFO - 08:37:52: | Name | Lower bound | Value | Upper bound | Type |
INFO - 08:37:52: +------+-------------+-------+-------------+-------+
INFO - 08:37:52: | x_1 | 0 | None | 1 | float |
INFO - 08:37:52: | x_2 | 0 | None | 1 | float |
INFO - 08:37:52: +------+-------------+-------+-------------+-------+
INFO - 08:37:52: Solving optimization problem with algorithm PYDOE_FULLFACT:
INFO - 08:37:52: 11%|█ | 1/9 [00:00<00:00, 376.14 it/sec, obj=1]
INFO - 08:37:52: 22%|██▏ | 2/9 [00:00<00:00, 616.99 it/sec, obj=2]
INFO - 08:37:52: 33%|███▎ | 3/9 [00:00<00:00, 794.07 it/sec, obj=3]
INFO - 08:37:52: 44%|████▍ | 4/9 [00:00<00:00, 934.56 it/sec, obj=2.5]
INFO - 08:37:52: 56%|█████▌ | 5/9 [00:00<00:00, 1047.69 it/sec, obj=3.5]
INFO - 08:37:52: 67%|██████▋ | 6/9 [00:00<00:00, 1139.65 it/sec, obj=4.5]
INFO - 08:37:52: 78%|███████▊ | 7/9 [00:00<00:00, 1216.24 it/sec, obj=4]
INFO - 08:37:52: 89%|████████▉ | 8/9 [00:00<00:00, 1281.39 it/sec, obj=5]
INFO - 08:37:52: 100%|██████████| 9/9 [00:00<00:00, 1337.56 it/sec, obj=6]
INFO - 08:37:52: Optimization result:
INFO - 08:37:52: Optimizer info:
INFO - 08:37:52: Status: None
INFO - 08:37:52: Message: None
INFO - 08:37:52: Number of calls to the objective function by the optimizer: 9
INFO - 08:37:52: Solution:
INFO - 08:37:52: Objective: 1.0
INFO - 08:37:52: Design space:
INFO - 08:37:52: +------+-------------+-------+-------------+-------+
INFO - 08:37:52: | Name | Lower bound | Value | Upper bound | Type |
INFO - 08:37:52: +------+-------------+-------+-------------+-------+
INFO - 08:37:52: | x_1 | 0 | 0 | 1 | float |
INFO - 08:37:52: | x_2 | 0 | 0 | 1 | float |
INFO - 08:37:52: +------+-------------+-------+-------------+-------+
INFO - 08:37:52: *** End DOEScenario execution (time: 0:00:00.011143) ***
Create the surrogate discipline#
Then, we build the Gaussian process regression model from the database and displays this model.
dataset = scenario.to_dataset(opt_naming=False)
model = create_surrogate("GaussianProcessRegressor", data=dataset)
Predict output#
Once it is built, we can use it for prediction, either with default inputs
model.execute()
{'x_1': array([0.5]), 'x_2': array([0.5]), 'y_1': array([3.5])}
or with user-defined ones.
model.execute({"x_1": array([1.0]), "x_2": array([2.0])})
{'x_1': array([1.]), 'x_2': array([2.]), 'y_1': array([6.03823023])}
Total running time of the script: (0 minutes 0.133 seconds)